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Abstract

Wireless sensor networks (WSNs) face critical challenges in fault detection that can compromise their quality of service 
in dynamic environments. This study introduces an integrated framework that enhances fault detection by combining 
advanced noise filtering, optimized feature selection, and a robust deep learning (DL) model. The framework employs 
a dynamic noise filtering technique with adaptive thresholding to effectively remove noise while preserving essential 
data integrity. Complementing this, the rank-based whale optimization algorithm refines feature selection, boosts 
model performance, and reduces computational demands. At its core, the hierarchical attention-based DL model 
utilizes temporal convolutional layers, long short-term memory units, and hierarchical attention mechanisms to capture 
both short-term and long-term dependencies in the data. Experimental evaluations on the WSN dataset demonstrate 
outstanding performance, with a precision of 0.98, a recall of 0.99, an F1-score of 0.98, and an area under the curve 
of 0.99 for all fault classes. Comparative analysis reveals that this framework outperforms existing approaches in 
terms of accuracy, sensitivity, specificity, and computational efficiency. Overall, the proposed solution improves fault 
detection and enhances network reliability, minimizes false alarms, and extends the operational lifespan of WSNs, 
offering a scalable approach for mission-critical applications in healthcare, environmental monitoring, and industrial 
automation.
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1. Introduction
Wireless sensor networks (WSNs) are a game-

changing technology that allows gathering, processing, 
and sending data from dispersed sensor nodes. These 
nodes can perceive and monitor their surroundings 
since they are outfitted with various sensors and 
communication tools (Gebremariam et  al., 2023). 
Environmental assessment, smart cities, healthcare, 
and industrial automation are just a few industries that 
use WSNs. Their capability to gather data remotely 
and in real-time from inaccessible or dangerous 
regions enables effective data-driven decision-
making (Chataut et al., 2023; Talukder et al., 2024). 
The sensitive nature of data being transferred and the 
possibility of network flaws make WSN security crucial 

(Yakubu and Maiwada, 2023). Data manipulation, 
denial of service attacks, and illegal access are just 
a few security risks that WSNs face (Nimbalkar et 
al., 2023). These dangers are more likely to affect 
WSNs because of their dispersed and wireless nature. 
Protecting the privacy, availability, and integrity of 
data in WSNs is essential to preserving these networks’ 
credibility and dependability (Alghamdi et al., 2023). 
The goal of intrusion detection, a crucial part of WSN 
security, is to identify and stop harmful activity on the 
network (Heidari and Jabraeil, 2022). Conventional 
rule-based intrusion detection systems frequently use 
predefined signatures or criteria, which are ineffective 
in identifying more complex assaults (Sezgin and 
Boyaci, 2022). One  method that has shown promise 
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for WSN intrusion detection is machine learning (ML). 
ML algorithms provide proactive and adaptive security 
measures by learning from past data and spotting 
abnormalities or patterns suggestive of possible 
breaches (Talukder et al., 2023). Intelligent intrusion 
detection systems may be developed in WSN owing 
to ML techniques. These algorithms can distinguish 
between benign and malicious behavior, analyze vast 
volumes of data, and identify odd trends (Ghazal, 
2022). By extracting useful information from intricate 
WSN datasets, ML techniques such as decision trees, 
random forests, neural networks, and gradient boosting 
techniques can increase the precision and efficacy of 
intrusion detection systems (Talukder et al., 2022).

Internet of Things (IoT) systems have unique 
characteristics, such as restricted bandwidth capacity 
(Qaiwmchi et al, 2020), limited energy, heterogeneity, 
global connection, and ubiquity, which make typical 
intrusion detection system solutions inadequate or 
less effective for their security. Deep learning (DL) 
and ML-related approaches have earned a reputation 
for their efficacious use in identifying network 
vulnerabilities, particularly those on IoT networks 
(Pandey et al., 2022). WSNs do not directly employ 
traditional network intrusion detection methods 
because of their poor computing and communication 
capabilities. Several WSN intrusion detection 
researchers can currently use ML algorithms to examine 
traffic data. Due to the WSN network’s growing user 
base and network size, it generates high-dimensional 
traffic data. Traditional ML models struggle with low 
feature extraction and detection accuracy, making them 
unsuitable for an application environment (Almomani, 
2021). The detection model’s precision can be 
increased using DL instead of ML models for intrusion 
detection systems, as they can learn the data flow 
features and reduce the computational load (Sharmin 
et al., 2023). This study aims to develop an integrated 
fault detection framework for WSNs that improves 
data reliability and overall network performance under 
dynamic conditions. The framework is designed to 
address challenges such as noise interference and high 
computational demands in fault detection based on the 
following contributions:
(i)	 Introduces a dynamic noise filtering (DNF) 

technique with adaptive thresholding to remove 
noise from sensor data while preserving critical 
information

(ii)	 Utilizes the rank-based whale optimization 
algorithm (RWOA) to select the most relevant 
and non-redundant features, thereby boosting 
model performance and reducing computational 
complexity

(iii)	 Develops a hierarchical attention-based DL 
(HADL) model that integrates temporal 
convolutional layers, long short-term memory 

(LSTM) units, and hierarchical attention 
mechanisms to capture both short-term and 
long-term dependencies in the data, leading to 
superior fault detection accuracy

(iv)	 Demonstrates exceptional performance on the 
WSN dataset (WSN-DS) with precision, recall, 
F1-scores, and area under the curve (AUC) 
values of 0.99 or higher, outperforming existing 
methods in accuracy, sensitivity, specificity, and 
computational efficiency.
This study provides a systematic overview 

of a research project addressing fault detection 
challenges in WSNs. It begins with an introduction; 
reviews existing studies; proposes a novel framework 
integrating noise filtering, feature optimization, and a 
hierarchical DL model; compares the approach against 
existing methodologies; and concludes with key 
contributions and potential future directions.

2. Related Work
The literature survey section provides a 

comprehensive overview of existing approaches in 
fault detection for WSNs. It examines the evolution 
of techniques in noise filtering, feature selection, and 
DL, identifying the strengths and limitations of current 
methodologies.

Tan et al. (2019) introduced an intrusion 
detection approach that leverages a random forest 
classifier enhanced by the synthetic minority 
oversampling technique to address dataset imbalance, 
improving accuracy from 92.39% to 92.57%. In a 
similar vein, Rezvi et al. (2021) employed a data 
mining framework to discern various types of denial of 
service attacks by comparing several classifiers—such 
as K-nearest neighbors (KNN), naïve Bayes, logistic 
regression, support vector machine, and artificial 
neural network—with their findings indicating that 
artificial neural network and KNN yielded superior 
accuracies of 98.56% and 98.4%, respectively. Meng 
et al. (2022) proposed an intrusion detection method 
tailored for resource-constrained WSNs, integrating a 
light gradient boosting machine with recursive feature 
elimination, Shapley additive explanations analysis, 
and an iterative tree model, in combination with the 
synthetic minority oversampling technique-Tomek 
balancing technique, which resulted in detection rates 
exceeding 99% for all attack types and a substantial 
reduction (46%) in modeling time.

Singh et al. (2020) developed a fuzzy rule-based 
intrusion prevention system that classifies sensor 
nodes into risk categories based on metrics, like packet 
delivery ratio, energy consumption, and signal strength, 
achieving an accuracy of 98.29% and effectively 
neutralizing malicious nodes. Alruhaily et al. (2021) 
designed a multi-tier intrusion detection architecture 
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incorporating a real-time naïve Bayes classifier at 
the network edge and a cloud-based random forest 
classifier for comprehensive packet analysis, with their 
system delivering high detection accuracies across 
various attack categories. Complementing these efforts, 
Chandre et al. (2022) employed a convolutional neural 
network within a DL framework to detect and prevent 
intrusions by extracting robust feature representations 
from extensive labeled datasets, reaching an accuracy 
rate of 97%.

Further advancing the field, an optimized 
collaborative intrusion detection system was proposed 
by Elsaid and Albatati (2020) using an updated 
artificial Bee colony optimization (BCO) algorithm 
that enhanced resource efficiency and detection 
accuracy while integrating a weighted support vector 
machine to minimize false alarms through effective 
coordination among base stations, cluster heads, and 
sensor nodes. Addressing data imbalance in WSN 
cyberattacks, Putrada et al. (2022) demonstrated that 
extreme gradient boosting outperformed decision 
trees and naïve Bayes by achieving the highest AUC 
values across multiple attack classes. Ravindra 
et al. (2023) introduced an innovative anomaly 
detection technique that utilizes data compression 
and dynamic thresholding, powered by an enhanced 
extreme learning machine coupled with an enhanced 
transient search arithmetic optimization (ETSAO) 
algorithm, which successfully reduced computational 
overhead and achieved a 96.90% accuracy on the 
WSN-DS. Finally, Alruwaili et al. (2023) presented 
the red kite optimization algorithm (RKOA) with 
an average ensemble model for intrusion detection 
(AEID) methodology for IoT-based WSNs, which 
incorporates feature selection through RKOA, min-
max normalization, and an average ensemble learning 
model with hyperparameter tuning using a Lévy-fight 
chaotic whale optimization technique, resulting in an 
improved accuracy of 98.94%.

While current methodologies effectively 
address individual aspects such as detection 
accuracy, computational efficiency, and class 
imbalance, they seldom integrate noise filtering, 
feature selection, and DL-based fault detection into 
a unified framework. Moreover, many approaches 
do not fully exploit hierarchical DL architectures 
capable of capturing both short-term and long-term 
temporal dependencies inherent in sensor data. This 
gap underscores the need for a comprehensive and 
scalable solution that simultaneously enhances 
network reliability, minimizes false alarms, and 
extends the operational lifespan of WSNs, thereby 
offering robust performance in dynamic and 
resource-constrained environments.

3. Proposed Methodology
The proposed methodology introduces an 

advanced framework (Fig.  1) for fault detection 
in WSNs, addressing the critical challenges of 
noise interference, suboptimal feature selection, 
and inaccurate fault classification in dynamic 
environments. By integrating a suite of cutting-edge 
techniques, the approach ensures enhanced fault 
detection accuracy and robust network performance 
while optimizing computational efficiency. The 
methodology begins with DNF using adaptive 
thresholding, a real-time noise mitigation strategy that 
dynamically adjusts thresholds based on statistical 
analysis of noise patterns in sensor data. This ensures 
the preservation of critical fault-indicative information 
while filtering out irrelevant fluctuations, even under 
varying environmental conditions. This adaptive 
mechanism significantly enhances the data quality 
fed into the fault detection pipeline. To extract the 
most relevant and non-redundant features, an RWOA 
was utilized. This novel metaheuristic optimization 
approach combines the global exploration capabilities 
of WOA with feature relevance ranking using mutual 
information. By balancing classification accuracy 
and feature dimensionality, the RWOA ensures the 
selection of an optimal, compact feature set, reducing 
computational overhead while maintaining precision.

For fault classification, the proposed framework 
leverages an HADL model. This multi-layered 
architecture incorporates temporal convolutional layers 
to capture short-term patterns and anomalies, followed 
by LSTM layers to model long-term dependencies in 
time-series data. The centerpiece of HADL is its dual-
level hierarchical attention mechanism, which prioritizes 
critical features within each time step and across the 
sequence, maximizing interpretability and decision 
accuracy. The final classification layer delivers precise 
fault predictions, adapting to the complexities of real-
world WSN scenarios. The proposed methodology 
establishes a high-performance fault detection framework 
by synergistically combining noise filtering, feature 
optimization, and a DL-based classification model. This 
approach not only enhances the quality of service but 
also ensures the scalability, reliability, and efficiency 
of WSNs in mission-critical applications. Integrating 
adaptive mechanisms and optimization-driven feature 
selection represents a significant advancement in fault 
detection technology, paving the way for more resilient 
and intelligent WSN deployments.

3.1. DNF Technique with Adaptive Thresholding
Initially, a DNF technique with adaptive 

thresholding effectively filters out noise while 
preserving critical data for fault detection in WSNs. 
First, the technique continuously monitors incoming 
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sensor data to assess the real-time noise levels and 
distribution patterns. It then calculates statistical 
properties, such as the mean and standard deviation 
of the noise, across a sliding window of recent data. 
Based on these calculations, the method dynamically 
adjusts the noise threshold, increasing it during high-
noise periods to avoid false positives and lowering 
it when data quality improves to ensure that subtle 

faults are not missed. This adaptive threshold is then 
applied to filter out noise, allowing only data points 
that exceed an adjusted threshold to pass through 
for further processing. The process is repeated 
continuously, ensuring the filtering adapts to changing 
network conditions, resulting in a more accurate and 
reliable dataset for subsequent analysis.

DNF with adaptive thresholding is a technique 

Fig. 1. Flow diagram of the proposed methodology
Abbreviations: HADL: Hierarchical attention-based deep learning; TDMA: Time-division multiple access
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used to improve the data quality in systems like WSNs, 
where data can be corrupted by noise due to various 
factors like sensor malfunctions, environmental 
interference, or communication issues. This method 
enhances the signal-to-noise ratio by removing noise 
without losing important information. This component 
refers to identifying and reducing noise in the data in 
real-time or dynamically, based on varying conditions. 
The noise filtering adapts to the type of noise and 
the changing characteristics of the signal. In a WSN, 
sensor readings can be affected by several types of 
noise, such as random fluctuations or environmental 
disturbances. DNF identifies and selectively removes 
these anomalies in the data, ensuring that useful 
signals are preserved.

Thresholding involves setting a limit (threshold) 
above or below which the data is considered noise or 
valid. Adaptive thresholding adjusts this threshold 
based on the current state of the data. In a dynamic 
environment, where sensor data characteristics change 
over time, a static threshold might not work effectively. 
The adaptive threshold is recalculated periodically or 
based on specific criteria, such as the variance of the 
data, the signal strength, or statistical measures of the 
data distribution. For example, if the sensor data shows 
sudden spikes or sharp drops (indicative of noise), the 
threshold can be adjusted to treat these as noise and filter 
them out. Conversely, when data becomes more stable 
or predictable, the threshold can be widened to capture 
a broader range of valid information. The algorithm for 
DNF with adaptive thresholding is as follows:
(i)	 Step 1: The system continuously monitors 

incoming sensor data for unusual patterns, 
sudden spikes, or deviations from expected 
values, characteristic of noise

(ii)	 Step 2: The system uses adaptive techniques to 
determine a dynamic threshold that reflects the 
current data distribution, variability, or other 
environmental factors. The threshold changes 
are based on observed conditions, such as the 
variance of the signal or the presence of unusual 
outliers

(iii)	 Step 3: Data points outside the adaptive threshold 
are flagged as noise and discarded or replaced. 
The remaining data is preserved for further 
processing and analysis

(iv)	 Step 4: By dynamically adjusting the threshold, 
the method ensures that important or meaningful 
data is not discarded while filtering out noise. This 
allows for better quality input for downstream 
analysis, such as fault detection in WSNs.
Removing noise without discarding useful data 

improves the quality of sensor readings, leading to 
better analysis and decision-making. The adaptive 
threshold can adjust to different types of noise or 
changes in the network conditions, making it more 

robust in dynamic environments. In systems like fault 
detection, reducing noise ensures that only actual faults 
are detected, minimizing false alarms. In summary, 
DNF with adaptive thresholding ensures that the data 
used for analysis in WSNs or similar systems is of high 
quality, with noise effectively removed based on real-
time conditions.

3.2. RWOA Technique
This research presents an RWOA to improve 

the efficacy of feature extraction. It uses the latest 
developments in metaheuristic optimization 
techniques to find the most pertinent features for defect 
identification. To start, the WOA searches the feature 
space to optimize a fitness function that strikes a 
compromise between feature set size and classification 
effectiveness. The algorithm effectively explores the 
search space, avoiding local optima and locating the 
optimal solution globally by imitating the bubble-net 
feeding method of humpback whales. Features with 
stronger correlations are given larger weights. In 
parallel, the dependence of each characteristic on the 
goal variable (i.e., defect or normal state) is evaluated 
using mutual information. The selected features from 
the WOA are then refined using the mutual information 
ranking, ensuring that only the most informative 
and non-redundant features are retained. This hybrid 
approach significantly improves the robustness and 
accuracy of the fault detection model by ensuring that 
the extracted features are both optimal in relevance 
and minimal in quantity, reducing the computational 
burden.

One of the popular population-based 
metaheuristic algorithms for solving global 
optimization problems in various fields is the WOA 
algorithm, developed by Mirjalili and Lewis (2016). 
The humpback whale’s natural hunting behavior 
serves as the model for this program. At the water’s 
surface, humpback whales hunt by focusing on schools 
of krill or tiny fish. To encircle and seize their prey, 
they form characteristic bubbles in a spiral pattern. 
The whales descend and swim to the water’s surface, 
creating spiral bubbles around the prey. The WOA 
uses three tactics to mimic whale behavior: (i) spiral 
bubble-net attacking (exploitation phase), (ii) hunting 
for prey (exploration phase), and (iii) surrounding the 
target. X x x xi

t
i
t

i
t

i D
t� �� �, , ,

, , ,
1 2

 represents the location 
of the ith whale at iteration t, where i = 1,2,…, N and N 
and D represent the whale population and the problem’s 
dimensions, respectively.

3.3. Encircling Prey Strategy
Whales can track down and enclose their prey. 

The ideal choice for whales in WOA is the target prey 
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or a nearby location inside the search area. Eq. (1) is 
used by other whales to update their location as they 
try to approach the ideal agent during prey encirclement. 
This equation is constructed with t representing the 
current iteration, Xi

t  representing the ith whale’s 
location for the current iteration, and X*t representing 
the position vector of the best solution, thus far, which 
is updated in each iteration if a better solution is 
discovered.

X X A Di
t t� � � �1 * � (1)

D C X Xt
i
t� � �* � (2)

where D stands for the distance between the 
whale and the prey X*t, which is established by Eq. 
(2). I  denote the absolute value, A and C represent 
coefficient vectors that are established using Eqs. (3) 
and (4).

A = 2 × a × r−a� (3)

C = 2 × r� (4)

a t
MaxIter

� � ��
�
�

�
�
�2 2 � (5)

According to Eq. (5), the parameter r in Eqs. (3) 
and (4) are random numbers in the interval, whereas 
Eq. (3) declines linearly from 2 to 0 repetitions. The 
values t and Maxiter are used in Eq. (5) to represent the 
current iteration and the total number of iterations. 
Through the use of the parameter a, the whales are 
gradually brought into the surrounding scope.

3.4. Spiral Bubble-net Attacking Strategy
Humpback whales use a bubble net to spiral 

toward their prey and corner them. Two strategies are 
used to mathematically represent this strategy: spiral 
updating position and shrinking encircling.

3.4.1. Shrinking encircling method
In Eq. (3), this tendency is reflected by reducing 

the value of the convergence variable a. Furthermore, 
the alternate range of A fluctuation is linearly lowered 
from 2 to 0, utilizing the parameter a through iterations. 
In other words, A is a random value belonging to the 
interval [−a,a].

3.4.2. Spiral updating position method
First, this method calculates the distance between 

whales Xi
t  using Eq. (6); X*t is the best result thus far. 

Next, a spiral migration from its present location 
towards an ideal solution is described using Eq. (7). In 
these calculations, the logarithmic spiral shape is 

determined by a constant parameter, b, and a random 
variable, l, between [−1,1].
D X Xt

i
t' *� � � (6)

X D e l Xi
t bl t� � � � �1

2
' *

cos( )� � (7)

The logarithmic spiral form is determined by 
a fixed parameter, b and a random value, l, that falls 
between [−1,1]. The humpback whale swims in WOA, 
spiraling around its prey in a tight circle. The spiral 
model or the diminishing encircling method is the two 
options the whale chooses for changing its location 
during the optimization phase. The mathematical 
model is defined by Eq. (8), where p is a random 
number in [0, 1].

X
X A D if p
D e l X if pi

t
t

bl t
� �

� � �
� � � �

�
�
�

1 0 5

2 0 5

*

' *
cos

.

( ) .�
� (8)

3.5. Searching for Prey Strategy
Whales employ this strategy to increase 

population diversity and seek the problem space 
for uncharted territory. A  randomly selected search 
agent updates the position of each whale. To avoid 
being caught in a local minimum, the search agent 
is pushed away from a randomly chosen humpback 
whale using the parameter A. Eq. (9) is employed for 
exploration [31].

1 

 

+ = − ×

= × −

t
i rand

t
rand i

X X A D

D C X X
� (9)

here A and C are calculated using Eqs. (3) 
and (4), and Xrand is a random position vector in the 
search space chosen from the available whales in the 
population.

After N, when whales are randomly distributed 
over the search space, the association objective function 
value is determined, as seen in the WOA flowchart in 
Fig. 2. When the initial values of the control parameters 

Fig. 2. Area under the curve (AUC) of the classes
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are altered, the optimization begins with the present 
iterations. At each iteration, the value of the parameter 
p is then evaluated. Eq. (7) specifies the spiral updating 
position method used by whales when p ≥ 0.5. Whales 
update their location when p < 0.5 using the encircling 
prey strategy (Eq. [1]) if |A|<1 and the hunting for prey 
strategy (Eq. [9] if |A|≥1). Subsequently, the fitness 
and viability values of the newly gained positions are 
computed. Next, the ideal solution is updated, and 
WOA is ultimately ended.

The WOA is based on humpback whale 
hunting behavior, mimicking the bubble-net strategy. 
It involves exploration and exploitation, with 
whales randomly moving in search of space and 
using shrinking encircling mechanisms and spiral 
movements. However, WOA can face challenges like 
premature or slow convergence due to poor exploration 
and exploitation balance. The rank-based method 
is introduced in RWOA to enhance the population 
selection mechanism during the optimization process. 
This method changes how whales are selected for 
exploration and exploitation by considering their rank 
in the population rather than selecting them randomly 
or with equal probability.

3.5.1. Rank assignment
After evaluating the fitness of all candidates 

(whales), they are ranked based on their fitness values 
(i.e., solutions with lower objective function values 
are ranked higher if the goal is minimization). Each 
individual in the population is assigned a rank based 
on their fitness, with the best solution (with the lowest 
fitness) getting rank 1, the second-best getting rank 2, 
and so on.

3.5.2. Probability-based selection
Instead of choosing individuals to update their 

position randomly or based on fixed probabilities, 
rank-based selection assigns higher probabilities 
to individuals with better (lower) ranks. The better 
individuals (those with better fitness) are more likely 
to be selected for the exploitation phase, while the 
worse individuals are more likely to be selected for the 
exploration phase. A non-linear probability distribution 
is often used, so the probability of selecting a whale 
is inversely proportional to its rank. This ensures that 
the algorithm focuses more on promising solutions 
while maintaining some diversity by allowing worse 
solutions to participate in the search process.

3.5.3. Exploration and exploitation
During the exploration phase, the worst-ranked 

individuals (those with higher ranks) can move freely, 

encouraging the algorithm to explore a wide area of the 
search space. During the exploitation phase, the best-
ranked individuals (those with lower ranks) are more 
likely to contribute to the search, refining the solution 
by focusing on regions with promising results.

3.5.4. Fitness-based movement
The movement of each whale is influenced by its 

rank. For example, for better individuals (lower ranks), 
they will likely refine their position by getting closer to 
the best solution. For worse individuals (higher ranks), 
they are more likely to perform a broader search to 
avoid premature convergence and encourage diversity.

3.5.5. Rank-based update of positions
The whale’s position update rule, which typically 

involves a spiral or encircling mechanism, can also be 
influenced by the whale’s rank. For example, whales 
with better ranks (i.e., better solutions) may use the 
shrinking encircling method with higher probabilities 
to exploit reasonable solutions, while whales with 
worse ranks can have a higher probability of using 
random search to explore new regions of the search 
space.

The RWOA improves convergence by ensuring 
better solutions drive the search process, leading to 
faster and more accurate results. It enhances diversity 
by allowing worse solutions to explore the search space, 
avoiding premature convergence, and maintaining 
population diversity. RWOA also balances exploration 
and exploitation, allowing for a broader search space 
and reducing the risk of stagnation by encouraging 
weaker solutions to explore new areas.

3.6. Hierarchical Attention-based DL Model
Finally, a HADL model is employed for fault 

detection in WSNs, which starts with an embedding 
layer that converts the raw input features from the 
WSN-DS into dense vectors, capturing the underlying 
patterns in a compressed form. Following this, 
temporal convolutional layers detect patterns and 
anomalies over short data sequences, focusing on how 
features change over time. These layers help identify 
sudden shifts or unusual trends that might indicate 
faults. Next, recurrent layers, such as LSTM units, 
capture long-term dependencies in the time-series data, 
effectively modeling how earlier data points influence 
future observations. The central innovation of HADL 
is its hierarchical attention mechanism, which is 
applied at multiple stages: first, to highlight the most 
relevant features within each time step, and then to 
focus on the most important time steps across the 
sequence. This dual-level attention ensures the model 
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prioritizes the most critical information for accurate 
fault detection. Finally, the processed data is passed 
through a fully connected layer, which integrates the 
information from all previous layers and leads to a 
softmax classification layer. This final layer provides a 
probability distribution over the fault classes, allowing 
the model to make precise and confident predictions 
about the network’s state. This layered structure of 
HADL ensures that the model effectively captures both 
immediate and long-term patterns in the data, leading 
to enhanced accuracy in detecting faults in WSNs.

The rank-based selection in RWOA improves 
convergence by ensuring better solutions drive the 
search process, leading to faster and more accurate 
results. It enhances diversity by allowing worse 
solutions to explore the search space, avoiding 
premature convergence, and maintaining population 
diversity. RWOA also balances exploration and 
exploitation, allowing for a broader search space and 
reducing the risk of stagnation by encouraging weaker 
solutions to explore new areas.

Recurrent neural networks are widely known for 
their ability to capture the dynamics of sequential data 
when working with time-sequence data supplied by 
monitoring systems. In contrast to a traditional neural 
network, HADL neurons are reinforced by including 
edges that span neighboring time steps. These links, 
which are referred to as recurrent edges, create cycles 
that are self-connected of a neuron to itself over time, 
adding a temporal component to the model data space. 
The behavior of a neuron with recurrent edges in a 
basic recurrent network may be explained as follows 
in Eq. (10):

h(t) = F(Wh(t−1)+Ux(t) + bh)

y(t) = G(Vh(t)+ by)� (10)

where h(t) represents the hidden layer activation 
at time t, h(t−1) represents the previously hidden 
representation, and x (t) represents the input layer’s 
current input. The input-to-hidden, hidden-to-hidden, 
and hidden-to-output connections are parametrized 
by the weight matrices W, U, and V, respectively, 
within the HADL. The output layer and hidden 
layer bias parametersby and bh allow offset learning. 
The two layers’ activation functions are F and G, 
respectively. The recurrent neural network’s output 
is y(t). In contrast to the propagation between layers, 
which is cyclic, the data propagation is one-way in 
the time direction when the network is unfurled from 
left to right. The distinction lies in the weights (W) 
being shared between time steps. The network may 
therefore be trained across several time steps using a 
backpropagation approach. As t2–t1 grows in size, the 
input’s contribution to time step t2 will either move to 
infinity or decay to zero since the weights are the same 
for all time steps. The loss gradient will also either 

burst or decay to the input, depending on the activation 
function f and whether |W| > 0 or |W|<0.

In the HADL method, every neuron in the hidden 
layer is substituted by a memory cell architecture with 
a core node known as the state unit s(t). This model’s 
architecture is similar to that of a typical recurrent 
neural network with a hidden layer. Like a typical 
neuron in a hidden layer, the cell has external outputs 
to the next time step and the layer below, as well as 
external inputs from the previous layer and the prior 
state. In addition, it features an internal set of gating 
units that use multiplication to regulate the information 
flow. Updates are made to the forgetting gate unit fi

(t), 
state unit s(t), input gate unit gi

(t), output gate unit qi
(t), 

and output hi
(t) for each time step t based on the current 

input xj
(t) and the prior output hj

(t−1). Below is the 
computing process for an LSTM model at each stage 
(Eq. [11]):
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(t)� (11)

The state unit and the three gate units are all 
triggered by the sigmoid function σ (‧) and have their 
own bias bi, input weights Ui,j, and recurrent weights 
Wi,j. Ultimately, the HADL cell’s output is modified 
to reflect the hidden layer vector hi

(t). When an input/
output gate is activated in the forward direction, the 
HADL may learn when and to what degree to let 
values in/out. The value of the hidden layer will neither 
increase nor decrease if both gates are closed, meaning 
that neither outputs nor intermediate time steps will be 
impacted. The gradients can also propagate backward 
throughout many time steps without disappearing or 
bursting. That is, gates may learn when to allow error 
to enter and when to limit it. The ability of HADL to 
learn long-term dependencies more effectively than 
standard recurrent designs has made it popular for a 
wide range of real-world applications.

The degree to which each input contributes to 
a target class of interest c, or the relevance score of 
each input concerning c, are among the things we are 
interested in understanding, given a trained neural 
network classifier. The fundamental principle behind 
HADL is to assign a relevance score to each input by 
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tracking each one’s layer-by-layer contribution to the 
final prediction, f(x). According to the conservation 
principle, the overall relevance allocated to one layer 
should match the total relevance allocated to the layer 
before. This is what the HADL method does. Given 
two successive layers of a neural network, let’s say m 
and n, the relevance scores meet the following criteria 
(Eq. [12]):

i
i
m

i
i
nR R f x� �� � � �( ) ( ) � (12)

In layers m and n, respectively, the relevance 
scores of individual neurons are denoted by Ri

(m) and 
Ri

(n). The rules governing the propagation of relevance 
scores between two layers by Eq. (9) are varied to 
accommodate the features of various neural network 
structures. Eq. (13) illustrates a basic rule:

R
z
z

Ri
m

j

i j

k k j
j
n( ) ,

,

( )� ��
� (13)

where ∑k zk,j is the total contribution/relevance 
delivered to neuron j from all linked neurons in layer 
m before the application of a nonlinear activation 
function; and zi,j is the contribution/relevance received 
by neuron j in layer n from an activated neuron i in 
layer m. This equation demonstrates the conservation 
principle, which also holds for deactivation, 
unconnected neurons, and zero weight (Eq. [14]).

R
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m i j

k k j
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j
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,

( )�
��� �

� (14)

Despite the HADL rule’s many desirable 
qualities, robustness, and other improvements must 
be taken into account when applying it to real-world 
situations (Eq. [15]).
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To maintain numerical stability, the denominator 
has a modest positive term ε in comparison to the 
fundamental rule, where both the beneficial and 
detrimental effects from the upper layer n are denoted 
by zi,j

+ and zi,j
−, respectively, and the weights of the 

positive and negative contributions are controlled by 
α and β. α+β should be in line with the conservation 
principle. To provide the outcomes with stability and 
interpretability, the rule prefers the effects of positive 
contributions over negative ones. One can manually 
regulate the significance of positive and negative 
contributions by carefully selecting the values of 
coefficients α and β.

Temporal convolutional networks with LSTM 
and other gated neural networks feature a unique 
calculation called multiplicative interaction in 

addition to linear mapping computation in multi-
layer perceptron architectures. Two neurons are 
multiplied by one another in this calculation, with 
one acting as a signal and the other as a gate that 
regulates the degree to which the signal affects the 
output (Eq. [16]):

ap = f(zg)⋅g(zs)� (16)

where zg and zs are two neuron values supplied to 
the gate and signal unit from earlier layers, respectively, 
f(⋅) is the gate unit’s activation function, and g(⋅) is the 
signal unit’s activation function.

In contrast to linear mapping, multiplicative 
interaction’s nonlinearity presents unique challenges 
related to reassigning importance to the preceding 
layer. An established redistribution hierarchical method 
known as “signal-take-all” is used when activation is 
obtained by multiplying the value of a gate neuron by 
the value of a signal neuron. This strategy includes 
(Eq. [17]):

(Rg,RS) = (0,Rp)� (17)

where the relevance scores for the gate and 
signal neurons are denoted by Rg and Rs, respectively. 
To comply with the conservation principle, the gate 
neuron takes zero, while the signal neuron takes all of 
the relevant Rp from the top layer.

The HADL is a versatile ML approach that excels 
in modeling complex data with multiple hierarchical 
relationships. Its attention mechanisms enhance model 
interpretability, allowing for a better understanding 
of the prioritization of features. HADL captures 
short-term and long-term dependencies, making it 
ideal for tasks like time-series analysis in WSNs. It 
also enhances feature learning with its hierarchical 
structure, allowing for better generalization and 
robustness in anomaly or fault detection tasks. HADL 
is adaptable to complex and noisy data, reducing 
overfitting and improving performance on time-series 
and sequential data. Its hierarchical nature allows it to 
scale efficiently to large datasets, making it suitable for 
real-world applications.

4. Results and Discussion

This section thoroughly analyzes the 
experimental results to assess the efficacy and 
efficiency of the suggested approach. The outcomes 
are compared to several cutting-edge methods using 
various criteria, including sensitivity, specificity, 
accuracy, and F1-score. The suggested approach 
outperformed the other methods by utilizing DL 
models and sophisticated optimization techniques, 
attaining near-perfect or perfect values in important 
measures.
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4.1. Experimental Setup
The discussion focuses on interpreting these 

results, highlighting the impact of the proposed 
approach on fault detection in WSN, and addressing 
how the method fills existing research gaps in reliability 
and precision. The experiments used Python 3.7 as the 
implementation platform, leveraging libraries such as 
NumPy, Pandas, TensorFlow/PyTorch, Scikit-learn, 
and Matplotlib for model development, optimization, 
and visualization. The system’s performance was 
evaluated under controlled conditions to ensure the 
robustness and generalizability of the results. The 
implementation and experimentation were performed 
on the following system configuration:
(i)	 Processor: Intel Core i7-12700H (12th Gen) with 

14 cores (6 performance + 8 efficiency cores) 
and a clock speed up to 4.7 GHz

(ii)	 Random access memory: 16 GB DDR4  3200 
MHz, enabling efficient data handling and 
processing of large datasets

(iii)	 Storage: 1 TB NVMe SSD, ensuring fast data 
read/write operations and loading of large models

(iv)	 Operating system: Windows 11  64-bit, with 
Python 3.7 as the programming environment

(v)	 Software frameworks: TensorFlow 2.9, PyTorch 
1.12, Scikit-learn 1.1, and Matplotlib 3.5.
This high-performance configuration ensured 

the smooth execution of computationally intensive 
tasks, such as hyperparameter tuning, training DL 
models, and performing iterative optimization. The 
experiments were iteratively refined to achieve 
optimal results, balancing computational efficiency 
and prediction accuracy. The setup included advanced 
optimization algorithms, fault detection models, and 
dynamic filtering techniques, tested under controlled 
conditions to ensure reliable and reproducible results. 
This environment facilitated seamless experimentation, 
from pre-processing the WSN-DS to training and 
evaluating the proposed HADL.

4.2. Dataset Description
The WSN-DS used in this study is a 

comprehensive and widely used benchmark for fault 
detection in WSNs. It contains various simulated data 
representing five distinct classes: normal, grayhole, 
blackhole, time-division multiple access (TDMA), 
and flooding. The dataset includes a total of 60,000 
instances, with each instance comprising detailed 
features that capture the behavior and state of network 
nodes under different conditions. The normal class 
represents typical, fault-free network operations, while 
the remaining classes correspond to various network 
faults and malicious attacks, such as packet-dropping 
and routing disruptions. Each class is well-balanced, 
ensuring robust performance evaluation across all fault 

categories. The dataset provides feature-rich instances, 
including metrics like node energy levels, packet 
counts, delays, and routing information, offering 
a realistic simulation of network scenarios. These 
features were carefully pre-processed, normalized, and 
split into training and testing sets to facilitate effective 
model training and validation. This dataset serves as an 
ideal foundation for evaluating the performance of fault 
detection methods in complex WSN environments.

4.3. Performance Metrics
Fig.  3 illustrates the convergence behavior and 

effectiveness of the RWOA. The initial phase, from 
the first to the second iterations, shows a significant 
drop in fitness value, indicating the algorithm’s 
exploratory phase. From the second to the seventh 
iterations, the plateau phase is marked by a plateau, 
where the algorithm focuses on refining solutions 
within a promising region. The further refinement 
phase decreases slightly to 0.0267, indicating a near-
optimal solution and fine-tuning results. The graph 
demonstrates the algorithm’s efficiency in narrowing 
down the search space, the plateau phase, where 
the algorithm focuses on exploitation, and the final 
convergence, where the algorithm has converged 
to a solution near the global optimum. This graph 
demonstrates the algorithm’s ability to efficiently 
find an optimal solution while avoiding unnecessary 
computations beyond the point of diminishing returns.

The confusion matrix represents the performance 
of a classification model across five classes: Normal, 
Grayhole, Blackhole, TDMA, and Flooding (Fig. 4). 
The diagonal elements indicate the correctly classified 
instances, while off-diagonal elements represent 
misclassifications. The model performs well overall, 
with high accuracy for each class, as evidenced by 
the large diagonal values. For example, normal has 
11,857 true positives, with minimal misclassifications. 

Fig. 3. Convergence behavior and effectiveness of the 
rank-based whale optimization algorithm
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Similarly, grayhole achieves 11,885 correct 
classifications, though 86 instances were misclassified 
as blackhole and three as normal. The blackhole 
class also performed well, with 11,950 true positives 
and minor misclassifications. For TDMA, the model 
correctly identified 11,695 instances, though there is 
some confusion with normal, grayhole, and blackhole. 
Finally, the Flooding class exhibited near-perfect 
classification, with 11,991 correct predictions and no 
significant misclassifications. The confusion matrix 
highlights the model’s robustness but also reveals areas 
for improvement, such as reducing misclassifications 
between normal and TDMA and minimizing confusion 
between grayhole and blackhole.

The AUC values for the five classes (0–4) 
indicate the model’s excellent discriminatory ability 
across all categories (Fig. 2). AUC values ranged from 
0 to 1, with values closer to 1 representing superior 
performance. Here, the AUC for class 0 (Normal) and 
class  3 (TDMA) is 0.99, indicating that the model 
can distinguish these classes from the others with 
near-perfect accuracy. For class 1 (Grayhole), class 2 

(Blackhole), and class  4 (Flooding), the AUC is a 
perfect 1, demonstrating flawless classification for 
these classes. This suggests that the model had no 
false positives or negatives for classes 1, 2, and 4, 
showing exceptional precision and recall. Overall, the 
AUC values underscore the model’s high reliability 
and effectiveness in differentiating between all classes, 
with minimal room for improvement.

The accuracy and loss curves in Fig.  5A and  B 
depict the model’s performance during training and 
testing. In plot 5A, the accuracy curve steadily increases 
during training, indicating that the model is learning 
effectively from the data. The testing accuracy also 
improves and stabilizes, closely aligning with the 
training accuracy, suggesting good generalization and 
minimal overfitting. In plot 5B, the loss curve decreases 
over epochs for both training and testing, reflecting a 
reduction in prediction errors as the model optimizes 
its parameters. The convergence of training and testing 
loss at low values confirms the model’s robust learning 
process. A smooth and stable trajectory for both accuracy 
and loss curves indicates that the model training is well-
tuned, with no signs of underfitting or overfitting, and 
performs consistently on unseen test data.

Fig. 6 shows the performance metrics for training 
and testing. With an overall accuracy of 99%, the 
model performed exceptionally well in the testing 
phase across all five classes of WSNs. With values 
near 0.99 or 1.00, the model’s accuracy, recall, and 
F1-scores were continuously high, demonstrating its 
capacity to accurately detect occurrences of each class 
while reducing false positives and false negatives. With 
a perfect score, the flooding class exhibited faultless 
detection. The performance of other classes, such as 
blackhole and grayhole, was also strong. Weighted and 
macro average measures further support the model’s 
balanced performance across classes. The model’s 
outstanding performance during training and testing, 
together with its ability to balance accuracy, recall, and 
F1-score, shows its usefulness in real-world situations 
where reliable and precise fault classification is required.

Fig. 4. Confusion matrix
Abbreviation: TDMA: Time-division multiple access

Fig. 5. (A and B) Accuracy and loss curves

BA
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4.4. Comparison Metrics

Fig.  7 shows the performance of various 
methods, including RKOA-AEID (Alruwaili et al., 
2023), Adaboost (Aljebreen et al., 2023), gradient 
boosting (Aljebreen et al., 2023), extreme gradient 
boosting (Alqahtani et al., 2019), KNN-angle of arrival 
(Liu et al., 2022), KNN-particle swarm optimization 
(Liu et al., 2022), and the proposed method, across four 
evaluation metrics: accuracy, F1-score, specificity, and 

sensitivity (Table 1). The proposed method achieved 
the highest accuracy (99%), demonstrating superior 
reliability in fault detection. RKOA-AEID performed 
well (98%), while Adaboost and KNN-particle swarm 
optimization performed moderately (94%). Gradient 
boosting, extreme gradient boosting, and KNN-angle 
of arrival exhibited intermediate results (97%). The 
proposed method excelled with a perfect F1-score 
(100%), indicating an exceptional balance between 
precision and recall. Adaboost and gradient boosting 

Fig. 7. (A-D) Comparative analysis for performance metrics
Abbreviations: AOA: Angle or arrival; GB: Gradient boosting; KNN: K-nearest neighbor; RKOA-AEID: Red kite 

optimization algorithm-average ensemble model for intrusion detection; PSO: Particle swarm optimization; 
XG Boost: Extreme gradient boosting

B

C D

A

Fig. 6. (A and B) Performance metrics for training and testing
Abbreviation: TDMA: Time-division multiple access
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Table 1. Comparative chart of the proposed model with conventional methods
Methods Accuracy Sensitivity Specificity F‑score
Red kite optimization algorithm‑average ensemble model for intrusion 
detection (Alruwaili et al., 2023)

98.94 75.33 96.45 79.52

AdaBoost (Aljebreen et al., 2023) 95.69 69.22 95.00 76.13
Gradient booting (Aljebreen et al., 2023) 94.58 71.03 94.09 71.92
Extreme gradient boosting (Alqahtani et al., 2019) 96.83 71.51 94.43 71.01
K‑nearest neighbor‑angle of arrival (Liu et al., 2022) 97.20 70.16 96.04 73.85
K‑nearest neighbor‑particle swarm optimization (Liu et al., 2022) 92.89 71.30 95.08 70.48
Proposed 99.25 98.74 99.32 98.39

lagged (75%), reflecting weaker handling of false 
positives or false negatives. Extreme gradient boosting 
and KNN-angle of arrival performed moderately 
(97%). The proposed method consistently outperforms 
all other techniques, achieving perfect F1, specificity, 
and sensitivity scores and near-perfect accuracy.

5. Conclusion

This research presents a unified framework 
for fault detection in WSNs that effectively 
combines advanced noise filtering, optimized feature 
selection, and a sophisticated DL architecture. The 
proposed approach leverages a DNF technique with 
adaptive thresholding to cleanse the data while 
preserving its critical aspects, employs the RWOA 
to select the most relevant features, and utilizes an 
HADL model to capture both short-term and long-
term dependencies in sensor data. Experimental 
evaluations of the WSN-DS confirm the framework’s 
exceptional performance, achieving an accuracy 
of 99.25%, sensitivity of 98.74%, specificity of 
99.32%, and an F-score of 98.39%. These results 
highlight the framework’s capacity to reliably detect 
faults and reduce false alarms, ultimately enhancing 
network reliability and extending the operational 
lifespan of WSNs. The integration of these advanced 
methodologies not only addresses existing challenges 
in fault detection but also establishes a robust 
foundation for future enhancements, including real-
time deployment and the incorporation of multi-
modal data.
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