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Abstract

Wireless sensor networks (WSNs) face critical challenges in fault detection that can compromise their quality of service
in dynamic environments. This study introduces an integrated framework that enhances fault detection by combining
advanced noise filtering, optimized feature selection, and a robust deep learning (DL) model. The framework employs
a dynamic noise filtering technique with adaptive thresholding to effectively remove noise while preserving essential
data integrity. Complementing this, the rank-based whale optimization algorithm refines feature selection, boosts
model performance, and reduces computational demands. At its core, the hierarchical attention-based DL model
utilizes temporal convolutional layers, long short-term memory units, and hierarchical attention mechanisms to capture
both short-term and long-term dependencies in the data. Experimental evaluations on the WSN dataset demonstrate
outstanding performance, with a precision of 0.98, a recall of 0.99, an F1-score of 0.98, and an area under the curve
of 0.99 for all fault classes. Comparative analysis reveals that this framework outperforms existing approaches in
terms of accuracy, sensitivity, specificity, and computational efficiency. Overall, the proposed solution improves fault
detection and enhances network reliability, minimizes false alarms, and extends the operational lifespan of WSNss,
offering a scalable approach for mission-critical applications in healthcare, environmental monitoring, and industrial
automation.

Keywords: Dynamic Noise Filtering, Hierarchical Attention-based Deep Learning, Long Short-term Memory, Quality
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1. Introduction (Yakubu and Maiwada, 2023). Data manipulation,
denial of service attacks, and illegal access are just

Wireless sensor networks (WSNs) are a game- it )
a few security risks that WSNs face (Nimbalkar et

changing technology that allows gathering, processing,

and sending data from dispersed sensor nodes. These al., 2023). These dangers are more likely to affect
nodes can perceive and monitor their surroundings WSNss because of their dispersed and wireless nature.
since they are outfitted with various sensors and Protecting the privacy, availability, and integrity of
communication tools (Gebremariam et al., 2023). data in WSNs is essential to preserving these networks’
Environmental assessment, smart cities, healthcare, credibility and dependability (Alghamdi et al., 2023).
and industrial automation are just a few industries that The goal of intrusion detection, a crucial part of WSN
use WSNs. Their capability to gather data remotely security, is to identify and stop harmful activity on the
and in real-time from inaccessible or dangerous network (Heidari and Jabraeil, 2022). Conventional
regions enables effective data-driven decision- rule-based intrusion detection systems frequently use
making (Chataut et al., 2023; Talukder et al., 2024). predefined signatures or criteria, which are ineffective
The sensitive nature of data being transferred and the in identifying more complex assaults (Sezgin and
possibility of network flaws make WSN security crucial Boyaci, 2022). One method that has shown promise
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for WSN intrusion detection is machine learning (ML).
ML algorithms provide proactive and adaptive security
measures by learning from past data and spotting
abnormalities or patterns suggestive of possible
breaches (Talukder et al., 2023). Intelligent intrusion
detection systems may be developed in WSN owing
to ML techniques. These algorithms can distinguish
between benign and malicious behavior, analyze vast
volumes of data, and identify odd trends (Ghazal,
2022). By extracting useful information from intricate
WSN datasets, ML techniques such as decision trees,
random forests, neural networks, and gradient boosting
techniques can increase the precision and efficacy of
intrusion detection systems (Talukder et al., 2022).
Internet of Things (IoT) systems have unique
characteristics, such as restricted bandwidth capacity
(Qaiwmchi et al, 2020), limited energy, heterogeneity,
global connection, and ubiquity, which make typical
intrusion detection system solutions inadequate or
less effective for their security. Deep learning (DL)
and ML-related approaches have earned a reputation
for their efficacious use in identifying network
vulnerabilities, particularly those on IoT networks
(Pandey et al., 2022). WSNs do not directly employ
traditional network intrusion detection methods
because of their poor computing and communication
capabilities. Several WSN intrusion detection
researchers can currently use ML algorithms to examine
traffic data. Due to the WSN network’s growing user
base and network size, it generates high-dimensional
traffic data. Traditional ML models struggle with low
feature extraction and detection accuracy, making them
unsuitable for an application environment (Almomani,
2021). The detection model’s precision can be
increased using DL instead of ML models for intrusion
detection systems, as they can learn the data flow
features and reduce the computational load (Sharmin
et al., 2023). This study aims to develop an integrated
fault detection framework for WSNs that improves
data reliability and overall network performance under
dynamic conditions. The framework is designed to
address challenges such as noise interference and high
computational demands in fault detection based on the
following contributions:
(i) Introduces a dynamic noise filtering (DNF)
technique with adaptive thresholding to remove
noise from sensor data while preserving critical
information
Utilizes the rank-based whale optimization
algorithm (RWOA) to select the most relevant
and non-redundant features, thereby boosting
model performance and reducing computational
complexity
Develops a hierarchical attention-based DL
(HADL) model that integrates temporal
convolutional layers, long short-term memory

(i)

(iii)
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(LSTM) units, and hierarchical attention
mechanisms to capture both short-term and
long-term dependencies in the data, leading to
superior fault detection accuracy

Demonstrates exceptional performance on the
WSN dataset (WSN-DS) with precision, recall,
Fl-scores, and area under the curve (AUC)
values of 0.99 or higher, outperforming existing
methods in accuracy, sensitivity, specificity, and
computational efficiency.

(iv)

This study provides a systematic overview
of a research project addressing fault detection
challenges in WSNs. It begins with an introduction;
reviews existing studies; proposes a novel framework
integrating noise filtering, feature optimization, and a
hierarchical DL model; compares the approach against
existing methodologies; and concludes with key
contributions and potential future directions.

2. Related Work

The literature survey section provides a
comprehensive overview of existing approaches in
fault detection for WSNs. It examines the evolution
of techniques in noise filtering, feature selection, and
DL, identifying the strengths and limitations of current
methodologies.

Tan et al. (2019) introduced an intrusion
detection approach that leverages a random forest
classifier enhanced by the synthetic minority
oversampling technique to address dataset imbalance,
improving accuracy from 92.39% to 92.57%. In a
similar vein, Rezvi et al. (2021) employed a data
mining framework to discern various types of denial of
service attacks by comparing several classifiers—such
as K-nearest neighbors (KNN), naive Bayes, logistic
regression, support vector machine, and artificial
neural network—with their findings indicating that
artificial neural network and KNN yielded superior
accuracies of 98.56% and 98.4%, respectively. Meng
et al. (2022) proposed an intrusion detection method
tailored for resource-constrained WSNSs, integrating a
light gradient boosting machine with recursive feature
elimination, Shapley additive explanations analysis,
and an iterative tree model, in combination with the
synthetic minority oversampling technique-Tomek
balancing technique, which resulted in detection rates
exceeding 99% for all attack types and a substantial
reduction (46%) in modeling time.

Singh et al. (2020) developed a fuzzy rule-based
intrusion prevention system that classifies sensor
nodes into risk categories based on metrics, like packet
delivery ratio, energy consumption, and signal strength,
achieving an accuracy of 98.29% and effectively
neutralizing malicious nodes. Alruhaily et al. (2021)
designed a multi-tier intrusion detection architecture
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incorporating a real-time naive Bayes classifier at
the network edge and a cloud-based random forest
classifier for comprehensive packet analysis, with their
system delivering high detection accuracies across
various attack categories. Complementing these efforts,
Chandre et al. (2022) employed a convolutional neural
network within a DL framework to detect and prevent
intrusions by extracting robust feature representations
from extensive labeled datasets, reaching an accuracy
rate of 97%.

Further advancing the field, an optimized
collaborative intrusion detection system was proposed
by Elsaid and Albatati (2020) using an updated
artificial Bee colony optimization (BCO) algorithm
that enhanced resource efficiency and detection
accuracy while integrating a weighted support vector
machine to minimize false alarms through effective
coordination among base stations, cluster heads, and
sensor nodes. Addressing data imbalance in WSN
cyberattacks, Putrada et al. (2022) demonstrated that
extreme gradient boosting outperformed decision
trees and naive Bayes by achieving the highest AUC
values across multiple attack classes. Ravindra
et al. (2023) introduced an innovative anomaly
detection technique that utilizes data compression
and dynamic thresholding, powered by an enhanced
extreme learning machine coupled with an enhanced
transient search arithmetic optimization (ETSAO)
algorithm, which successfully reduced computational
overhead and achieved a 96.90% accuracy on the
WSN-DS. Finally, Alruwaili et al. (2023) presented
the red kite optimization algorithm (RKOA) with
an average ensemble model for intrusion detection
(AEID) methodology for IoT-based WSNs, which
incorporates feature selection through RKOA, min-
max normalization, and an average ensemble learning
model with hyperparameter tuning using a Lévy-fight
chaotic whale optimization technique, resulting in an
improved accuracy of 98.94%.

While current methodologies effectively
address individual aspects such as detection
accuracy, computational efficiency, and class

imbalance, they seldom integrate noise filtering,
feature selection, and DL-based fault detection into
a unified framework. Moreover, many approaches
do not fully exploit hierarchical DL architectures
capable of capturing both short-term and long-term
temporal dependencies inherent in sensor data. This
gap underscores the need for a comprehensive and
scalable solution that simultaneously enhances
network reliability, minimizes false alarms, and
extends the operational lifespan of WSNs, thereby
offering robust performance in dynamic and
resource-constrained environments.
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3. Proposed Methodology

The proposed methodology introduces an
advanced framework (Fig. 1) for fault detection
in WSNs, addressing the critical challenges of
noise interference, suboptimal feature selection,
and inaccurate fault classification in dynamic
environments. By integrating a suite of cutting-edge
techniques, the approach ensures enhanced fault
detection accuracy and robust network performance
while optimizing computational efficiency. The
methodology begins with DNF using adaptive
thresholding, a real-time noise mitigation strategy that
dynamically adjusts thresholds based on statistical
analysis of noise patterns in sensor data. This ensures
the preservation of critical fault-indicative information
while filtering out irrelevant fluctuations, even under
varying environmental conditions. This adaptive
mechanism significantly enhances the data quality
fed into the fault detection pipeline. To extract the
most relevant and non-redundant features, an RWOA
was utilized. This novel metaheuristic optimization
approach combines the global exploration capabilities
of WOA with feature relevance ranking using mutual
information. By balancing classification accuracy
and feature dimensionality, the RWOA ensures the
selection of an optimal, compact feature set, reducing
computational overhead while maintaining precision.

For fault classification, the proposed framework
leverages an HADL model. This multi-layered
architecture incorporates temporal convolutional layers
to capture short-term patterns and anomalies, followed
by LSTM layers to model long-term dependencies in
time-series data. The centerpiece of HADL is its dual-
level hierarchical attention mechanism, which prioritizes
critical features within each time step and across the
sequence, maximizing interpretability and decision
accuracy. The final classification layer delivers precise
fault predictions, adapting to the complexities of real-
world WSN scenarios. The proposed methodology
establishes a high-performance fault detection framework
by synergistically combining noise filtering, feature
optimization, and a DL-based classification model. This
approach not only enhances the quality of service but
also ensures the scalability, reliability, and efficiency
of WSNs in mission-critical applications. Integrating
adaptive mechanisms and optimization-driven feature
selection represents a significant advancement in fault
detection technology, paving the way for more resilient
and intelligent WSN deployments.

3.1. DNF Technique with Adaptive Thresholding

Initially, a DNF technique with adaptive
thresholding effectively filters out noise while
preserving critical data for fault detection in WSNss.
First, the technique continuously monitors incoming
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Fig. 1. Flow diagram of the proposed methodology
Abbreviations: HADL: Hierarchical attention-based deep learning; TDMA: Time-division multiple access

sensor data to assess the real-time noise levels and
distribution patterns. It then calculates statistical
properties, such as the mean and standard deviation
of the noise, across a sliding window of recent data.
Based on these calculations, the method dynamically
adjusts the noise threshold, increasing it during high-
noise periods to avoid false positives and lowering
it when data quality improves to ensure that subtle
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faults are not missed. This adaptive threshold is then
applied to filter out noise, allowing only data points
that exceed an adjusted threshold to pass through
for further processing. The process is repeated
continuously, ensuring the filtering adapts to changing
network conditions, resulting in a more accurate and
reliable dataset for subsequent analysis.

DNF with adaptive thresholding is a technique
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used to improve the data quality in systems like WSNSs,
where data can be corrupted by noise due to various
factors like sensor malfunctions, environmental
interference, or communication issues. This method
enhances the signal-to-noise ratio by removing noise
without losing important information. This component
refers to identifying and reducing noise in the data in
real-time or dynamically, based on varying conditions.
The noise filtering adapts to the type of noise and
the changing characteristics of the signal. In a WSN,
sensor readings can be affected by several types of
noise, such as random fluctuations or environmental
disturbances. DNF identifies and selectively removes
these anomalies in the data, ensuring that useful
signals are preserved.

Thresholding involves setting a limit (threshold)
above or below which the data is considered noise or
valid. Adaptive thresholding adjusts this threshold
based on the current state of the data. In a dynamic
environment, where sensor data characteristics change
over time, a static threshold might not work effectively.
The adaptive threshold is recalculated periodically or
based on specific criteria, such as the variance of the
data, the signal strength, or statistical measures of the
data distribution. For example, if the sensor data shows
sudden spikes or sharp drops (indicative of noise), the
threshold can be adjusted to treat these as noise and filter
them out. Conversely, when data becomes more stable
or predictable, the threshold can be widened to capture
a broader range of valid information. The algorithm for
DNF with adaptive thresholding is as follows:

(i) Step 1: The system continuously monitors
incoming sensor data for unusual patterns,
sudden spikes, or deviations from expected
values, characteristic of noise

Step 2: The system uses adaptive techniques to
determine a dynamic threshold that reflects the
current data distribution, variability, or other
environmental factors. The threshold changes
are based on observed conditions, such as the
variance of the signal or the presence of unusual
outliers

Step 3: Data points outside the adaptive threshold
are flagged as noise and discarded or replaced.
The remaining data is preserved for further
processing and analysis

Step 4: By dynamically adjusting the threshold,
the method ensures that important or meaningful
data is not discarded while filtering out noise. This
allows for better quality input for downstream
analysis, such as fault detection in WSNS.

(i)

(iii)

(iv)

Removing noise without discarding useful data
improves the quality of sensor readings, leading to
better analysis and decision-making. The adaptive
threshold can adjust to different types of noise or
changes in the network conditions, making it more
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robust in dynamic environments. In systems like fault
detection, reducing noise ensures that only actual faults
are detected, minimizing false alarms. In summary,
DNF with adaptive thresholding ensures that the data
used for analysis in WSNs or similar systems is of high
quality, with noise effectively removed based on real-
time conditions.

3.2. RWOA Technique

This research presents an RWOA to improve
the efficacy of feature extraction. It uses the latest
developments in  metaheuristic ~ optimization
techniques to find the most pertinent features for defect
identification. To start, the WOA searches the feature
space to optimize a fitness function that strikes a
compromise between feature set size and classification
effectiveness. The algorithm effectively explores the
search space, avoiding local optima and locating the
optimal solution globally by imitating the bubble-net
feeding method of humpback whales. Features with
stronger correlations are given larger weights. In
parallel, the dependence of each characteristic on the
goal variable (i.e., defect or normal state) is evaluated
using mutual information. The selected features from
the WOA are then refined using the mutual information
ranking, ensuring that only the most informative
and non-redundant features are retained. This hybrid
approach significantly improves the robustness and
accuracy of the fault detection model by ensuring that
the extracted features are both optimal in relevance
and minimal in quantity, reducing the computational
burden.

One of the popular population-based
metaheuristic  algorithms  for solving  global
optimization problems in various fields is the WOA
algorithm, developed by Mirjalili and Lewis (2016).
The humpback whale’s natural hunting behavior
serves as the model for this program. At the water’s
surface, humpback whales hunt by focusing on schools
of krill or tiny fish. To encircle and seize their prey,
they form characteristic bubbles in a spiral pattern.
The whales descend and swim to the water’s surface,
creating spiral bubbles around the prey. The WOA
uses three tactics to mimic whale behavior: (i) spiral
bubble-net attacking (exploitation phase), (ii) hunting
for prey (exploration phase), and (iii) surrounding the
target. X =(x;,,x/,,...,X ,) represents the location
of the i whale at iteration ¢, where i = 1,2,..., Nand N
and D represent the whale population and the problem’s
dimensions, respectively.

3.3. Encircling Prey Strategy

Whales can track down and enclose their prey.
The ideal choice for whales in WOA is the target prey
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or a nearby location inside the search area. Eq. (1) is
used by other whales to update their location as they
try to approach the ideal agent during prey encirclement.
This equation is constructed with ¢ representing the
current iteration, X, representing the i whale’s
location for the current iteration, and X* representing
the position vector of the best solution, thus far, which
is updated in each iteration if a better solution is
discovered.

X" =X"-4-D (1)
D:|C><X*’ - X! )

where D stands for the distance between the
whale and the prey X*', which is established by Eq.
(2). I denote the absolute value, 4 and C represent
coefficient vectors that are established using Egs. (3)
and (4).

A=2%xXaxr-a 3)

C=2xr 4)

a:z_p{__é__j s)
Maxlter

According to Eq. (5), the parameter r in Egs. (3)
and (4) are random numbers in the interval, whereas
Eq. (3) declines linearly from 2 to O repetitions. The
values 7 and Max,, are used in Eq. (5) to represent the
current iteration and the total number of iterations.
Through the use of the parameter a, the whales are
gradually brought into the surrounding scope.

3.4. Spiral Bubble-net Attacking Strategy

Humpback whales use a bubble net to spiral
toward their prey and corner them. Two strategies are
used to mathematically represent this strategy: spiral
updating position and shrinking encircling.

3.4.1. Shrinking encircling method

In Eq. (3), this tendency is reflected by reducing
the value of the convergence variable a. Furthermore,
the alternate range of A fluctuation is linearly lowered
from 2 to 0, utilizing the parameter a through iterations.
In other words, 4 is a random value belonging to the
interval [—a,a].

3.4.2. Spiral updating position method

First, this method calculates the distance between
whales X/ using Eq. (6); X*'is the best result thus far.
Next, a spiral migration from its present location
towards an ideal solution is described using Eq. (7). In
these calculations, the logarithmic spiral shape is
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determined by a constant parameter, b, and a random
variable, /, between [—1,1].

D =|x" - x| (6)

X' =D xe"” xcos(2rl)+ X (7)

The logarithmic spiral form is determined by
a fixed parameter, b and a random value, /, that falls
between [—1,1]. The humpback whale swims in WOA,
spiraling around its prey in a tight circle. The spiral
model or the diminishing encircling method is the two
options the whale chooses for changing its location
during the optimization phase. The mathematical
model is defined by Eq. (8), where p is a random
number in [0, 1].

X" -4AxDi 0.5
D ®)
D xe”" xcosQe)+ X" if p=0.5
3.5. Searching for Prey Strategy
Whales employ this strategy to increase

population diversity and seek the problem space
for uncharted territory. A randomly selected search
agent updates the position of each whale. To avoid
being caught in a local minimum, the search agent
is pushed away from a randomly chosen humpback
whale using the parameter 4. Eq. (9) is employed for
exploration [31].

—AxD
—X[’|

X=X

rand

)
D:|C><X

rand

here 4 and C are calculated using Egs. (3)
and (4), and X is a random position vector in the
search space chosen from the available whales in the
population.

After N, when whales are randomly distributed
over the search space, the association objective function
value is determined, as seen in the WOA flowchart in
Fig. 2. When the initial values of the control parameters

1.0 E s
-
7’
7’
s
-
’
//
0.8 1 -’
-
[ -~
7’
5 ~
o 2
0.6 <
2 -~
= 7
2
[- % 4
g o4 L
= 'l
s
/’,
s —— Class 0 (AUC = 0.99)
0.2 ,,’ —— Class 1 (AUC = 1.00)
o7 = Class 2 (AUC = 1.00)
ol —— Class 3 (AUC = 0.99)
L —— Class 4 (AUC = 1.00)
0.0

0.0 0.2 0.6 0.8 10

0.4
False Positive Rate

Fig. 2. Area under the curve (AUC) of the classes
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are altered, the optimization begins with the present
iterations. At each iteration, the value of the parameter
p is then evaluated. Eq. (7) specifies the spiral updating
position method used by whales when p > 0.5. Whales
update their location when p < 0.5 using the encircling
prey strategy (Eq. [1]) if |[4|<1 and the hunting for prey
strategy (Eq. [9] if |4[>1). Subsequently, the fitness
and viability values of the newly gained positions are
computed. Next, the ideal solution is updated, and
WOA is ultimately ended.

The WOA is based on humpback whale
hunting behavior, mimicking the bubble-net strategy.
It involves exploration and exploitation, with
whales randomly moving in search of space and
using shrinking encircling mechanisms and spiral
movements. However, WOA can face challenges like
premature or slow convergence due to poor exploration
and exploitation balance. The rank-based method
is introduced in RWOA to enhance the population
selection mechanism during the optimization process.
This method changes how whales are selected for
exploration and exploitation by considering their rank
in the population rather than selecting them randomly
or with equal probability.

3.5.1. Rank assignment

After evaluating the fitness of all candidates
(whales), they are ranked based on their fitness values
(i.e., solutions with lower objective function values
are ranked higher if the goal is minimization). Each
individual in the population is assigned a rank based
on their fitness, with the best solution (with the lowest
fitness) getting rank 1, the second-best getting rank 2,
and so on.

3.5.2. Probability-based selection

Instead of choosing individuals to update their
position randomly or based on fixed probabilities,
rank-based selection assigns higher probabilities
to individuals with better (lower) ranks. The better
individuals (those with better fitness) are more likely
to be selected for the exploitation phase, while the
worse individuals are more likely to be selected for the
exploration phase. A non-linear probability distribution
is often used, so the probability of selecting a whale
is inversely proportional to its rank. This ensures that
the algorithm focuses more on promising solutions
while maintaining some diversity by allowing worse
solutions to participate in the search process.

3.5.3. Exploration and exploitation

During the exploration phase, the worst-ranked
individuals (those with higher ranks) can move freely,
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encouraging the algorithm to explore a wide area of the
search space. During the exploitation phase, the best-
ranked individuals (those with lower ranks) are more
likely to contribute to the search, refining the solution
by focusing on regions with promising results.

3.5.4. Fitness-based movement

The movement of each whale is influenced by its
rank. For example, for better individuals (lower ranks),
they will likely refine their position by getting closer to
the best solution. For worse individuals (higher ranks),
they are more likely to perform a broader search to
avoid premature convergence and encourage diversity.

3.5.5. Rank-based update of positions

The whale’s position update rule, which typically
involves a spiral or encircling mechanism, can also be
influenced by the whale’s rank. For example, whales
with better ranks (i.e., better solutions) may use the
shrinking encircling method with higher probabilities
to exploit reasonable solutions, while whales with
worse ranks can have a higher probability of using
random search to explore new regions of the search
space.

The RWOA improves convergence by ensuring
better solutions drive the search process, leading to
faster and more accurate results. It enhances diversity
by allowing worse solutions to explore the search space,
avoiding premature convergence, and maintaining
population diversity. RWOA also balances exploration
and exploitation, allowing for a broader search space
and reducing the risk of stagnation by encouraging
weaker solutions to explore new areas.

3.6. Hierarchical Attention-based DL Model

Finally, a HADL model is employed for fault
detection in WSNs, which starts with an embedding
layer that converts the raw input features from the
WSN-DS into dense vectors, capturing the underlying
patterns in a compressed form. Following this,
temporal convolutional layers detect patterns and
anomalies over short data sequences, focusing on how
features change over time. These layers help identify
sudden shifts or unusual trends that might indicate
faults. Next, recurrent layers, such as LSTM units,
capture long-term dependencies in the time-series data,
effectively modeling how earlier data points influence
future observations. The central innovation of HADL
is its hierarchical attention mechanism, which is
applied at multiple stages: first, to highlight the most
relevant features within each time step, and then to
focus on the most important time steps across the
sequence. This dual-level attention ensures the model
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prioritizes the most critical information for accurate
fault detection. Finally, the processed data is passed
through a fully connected layer, which integrates the
information from all previous layers and leads to a
softmax classification layer. This final layer provides a
probability distribution over the fault classes, allowing
the model to make precise and confident predictions
about the network’s state. This layered structure of
HADL ensures that the model effectively captures both
immediate and long-term patterns in the data, leading
to enhanced accuracy in detecting faults in WSNs.

The rank-based selection in RWOA improves
convergence by ensuring better solutions drive the
search process, leading to faster and more accurate
results. It enhances diversity by allowing worse
solutions to explore the search space, avoiding
premature convergence, and maintaining population
diversity. RWOA also balances exploration and
exploitation, allowing for a broader search space and
reducing the risk of stagnation by encouraging weaker
solutions to explore new areas.

Recurrent neural networks are widely known for
their ability to capture the dynamics of sequential data
when working with time-sequence data supplied by
monitoring systems. In contrast to a traditional neural
network, HADL neurons are reinforced by including
edges that span neighboring time steps. These links,
which are referred to as recurrent edges, create cycles
that are self-connected of a neuron to itself over time,
adding a temporal component to the model data space.
The behavior of a neuron with recurrent edges in a
basic recurrent network may be explained as follows
in Eq. (10):

ho = FOWh“D+Ux® + b )

30 = G(VhO+b) (10)

where A® represents the hidden layer activation
at time ¢, A“" represents the previously hidden
representation, and x (#) represents the input layer’s
current input. The input-to-hidden, hidden-to-hidden,
and hidden-to-output connections are parametrized
by the weight matrices W, U, and V, respectively,
within the HADL. The output layer and hidden
layer bias parametersb, and b, allow offset learning.
The two layers’ activation functions are F and G,
respectively. The recurrent neural network’s output
is ». In contrast to the propagation between layers,
which is cyclic, the data propagation is one-way in
the time direction when the network is unfurled from
left to right. The distinction lies in the weights (W)
being shared between time steps. The network may
therefore be trained across several time steps using a
backpropagation approach. As t2—-tl grows in size, the
input’s contribution to time step t2 will either move to
infinity or decay to zero since the weights are the same
for all time steps. The loss gradient will also either
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burst or decay to the input, depending on the activation
function f and whether [¥] > 0 or | W|<O0.

In the HADL method, every neuron in the hidden
layer is substituted by a memory cell architecture with
a core node known as the state unit s(*). This model’s
architecture is similar to that of a typical recurrent
neural network with a hidden layer. Like a typical
neuron in a hidden layer, the cell has external outputs
to the next time step and the layer below, as well as
external inputs from the previous layer and the prior
state. In addition, it features an internal set of gating
units that use multiplication to regulate the information
flow. Updates are made to the forgetting gate unit 1,
state unit s, input gate unit g”, output gate unit g,”,
and output 4 for each time step ¢ based on the current
input x(’) and the prior output h/“ D, Below is the
computmg process for an LSTM model at each stage

(Eq. [11]):

f =0 [b,.f +> U/ X"+ ZWI.{;hj(.’”]
J J
(t) (ORG (1) (@=1)
= [0 4 gt o(b +ZU” : +ZW,.J.hj )
J
g’ =0 [bf + YU+ WERT j
J J

(1 _ 0 o (1) 0 1,(t-1)
4i G[bi + 200X+ D j
j J

h” = tanh(s,*)q (1

The state unit and the three gate units are all
triggered by the sigmoid function o (*) and have their
own bias b, input weights U, and recurrent weights
w,. Ult1mately, the HADL cell s output is modified
to reﬂect the hidden layer vector 4. When an input/
output gate is activated in the forward direction, the
HADL may learn when and to what degree to let
values in/out. The value of the hidden layer will neither
increase nor decrease if both gates are closed, meaning
that neither outputs nor intermediate time steps will be
impacted. The gradients can also propagate backward
throughout many time steps without disappearing or
bursting. That is, gates may learn when to allow error
to enter and when to limit it. The ability of HADL to
learn long-term dependencies more effectively than
standard recurrent designs has made it popular for a
wide range of real-world applications.

The degree to which each input contributes to
a target class of interest ¢, or the relevance score of
each input concerning ¢, are among the things we are
interested in understanding, given a trained neural
network classifier. The fundamental principle behind
HADL is to assign a relevance score to each input by
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tracking each one’s layer-by-layer contribution to the
final prediction, f{x). According to the conservation
principle, the overall relevance allocated to one layer
should match the total relevance allocated to the layer
before. This is what the HADL method does. Given
two successive layers of a neural network, let’s say m
and n, the relevance scores meet the following criteria

(Eq. [12]):

zRi(m _ zRi(n) :f(x)

i i

(12)

In layers m and n, respectively, the relevance
scores of individual neurons are denoted by R ™ and
R ™. The rules governing the propagation of relevance
scores between two layers by Eq. (9) are varied to
accommodate the features of various neural network
structures. Eq. (13) illustrates a basic rule:

Z. .
(m) __ ij (n)
R™ = LR

Zy

(13)
J Kk

where Zksz, is the total contribution/relevance
delivered to neuron j from all linked neurons in layer
m before the application of a nonlinear activation
function; and z,; is the contribution/relevance received
by neuron ; in layer n from an activated neuron i in
layer m. This equation demonstrates the conservation
principle, which also holds for deactivation,
unconnected neurons, and zero weight (Eq. [14]).

R™ =% —Z—R" 14
: Z,szsz : (14)

Despite the HADL rule’s many desirable
qualities, robustness, and other improvements must
be taken into account when applying it to real-world
situations (Eq. [15]).

z .t z .
(m) __ 5J i,j (n)
R[M_zj azz +—ﬁzz JRJ_"
i i

To maintain numerical stability, the denominator
has a modest positive term ¢ in comparison to the
fundamental rule, where both the beneficial and
detrimental effects from the upper layer n are denoted
by z,' and Z5 respectively, and the weights of the
positive and negative contributions are controlled by
o and f. a+pf should be in line with the conservation
principle. To provide the outcomes with stability and
interpretability, the rule prefers the effects of positive
contributions over negative ones. One can manually
regulate the significance of positive and negative
contributions by carefully selecting the values of
coefficients a and f.

Temporal convolutional networks with LSTM
and other gated neural networks feature a unique
calculation called multiplicative interaction in

(15)
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addition to linear mapping computation in multi-
layer perceptron architectures. Two neurons are
multiplied by one another in this calculation, with
one acting as a signal and the other as a gate that
regulates the degree to which the signal affects the
output (Eq. [16]):

(16)

where z, and z_are two neuron values supplied to
the gate and signal unit from earlier layers, respectively,
() is the gate unit’s activation function, and g() is the
signal unit’s activation function.

In contrast to linear mapping, multiplicative
interaction’s nonlinearity presents unique challenges
related to reassigning importance to the preceding
layer. An established redistribution hierarchical method
known as “signal-take-all” is used when activation is
obtained by multiplying the value of a gate neuron by
the value of a signal neuron. This strategy includes

(Eq. [17]):
(R.R)=(0.R)

a, = fz) ()

(17)

where the relevance scores for the gate and
signal neurons are denoted by R, and R, respectively.
To comply with the conservation principle, the gate
neuron takes zero, while the signal neuron takes all of
the relevant R, from the top layer.

The HADL is a versatile ML approach that excels
in modeling complex data with multiple hierarchical
relationships. Its attention mechanisms enhance model
interpretability, allowing for a better understanding
of the prioritization of features. HADL -captures
short-term and long-term dependencies, making it
ideal for tasks like time-series analysis in WSNs. It
also enhances feature learning with its hierarchical
structure, allowing for better generalization and
robustness in anomaly or fault detection tasks. HADL
is adaptable to complex and noisy data, reducing
overfitting and improving performance on time-series
and sequential data. Its hierarchical nature allows it to
scale efficiently to large datasets, making it suitable for
real-world applications.

4. Results and Discussion

This  section thoroughly analyzes the
experimental results to assess the efficacy and
efficiency of the suggested approach. The outcomes
are compared to several cutting-edge methods using
various criteria, including sensitivity, specificity,
accuracy, and Fl-score. The suggested approach
outperformed the other methods by utilizing DL
models and sophisticated optimization techniques,
attaining near-perfect or perfect values in important
measures.
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4.1. Experimental Setup

The discussion focuses on interpreting these
results, highlighting the impact of the proposed
approach on fault detection in WSN, and addressing
how the method fills existing research gaps in reliability
and precision. The experiments used Python 3.7 as the
implementation platform, leveraging libraries such as
NumPy, Pandas, TensorFlow/PyTorch, Scikit-learn,
and Matplotlib for model development, optimization,
and visualization. The system’s performance was
evaluated under controlled conditions to ensure the
robustness and generalizability of the results. The
implementation and experimentation were performed
on the following system configuration:

(i)  Processor: Intel Core i7-12700H (12" Gen) with

14 cores (6 performance + 8§ efficiency cores)

and a clock speed up to 4.7 GHz

(i) Random access memory: 16 GB DDR4 3200
MHz, enabling efficient data handling and
processing of large datasets

(iii) Storage: 1 TB NVMe SSD, ensuring fast data
read/write operations and loading of large models

(iv) Operating system: Windows 11 64-bit, with
Python 3.7 as the programming environment

(v) Software frameworks: TensorFlow 2.9, PyTorch

1.12, Scikit-learn 1.1, and Matplotlib 3.5.

This high-performance configuration ensured
the smooth execution of computationally intensive
tasks, such as hyperparameter tuning, training DL
models, and performing iterative optimization. The
experiments were iteratively refined to achieve
optimal results, balancing computational efficiency
and prediction accuracy. The setup included advanced
optimization algorithms, fault detection models, and
dynamic filtering techniques, tested under controlled
conditions to ensure reliable and reproducible results.
This environment facilitated seamless experimentation,
from pre-processing the WSN-DS to training and
evaluating the proposed HADL.

4.2. Dataset Description

The WSN-DS wused in this study is a
comprehensive and widely used benchmark for fault
detection in WSNs. It contains various simulated data
representing five distinct classes: normal, grayhole,
blackhole, time-division multiple access (TDMA),
and flooding. The dataset includes a total of 60,000
instances, with each instance comprising detailed
features that capture the behavior and state of network
nodes under different conditions. The normal class
represents typical, fault-free network operations, while
the remaining classes correspond to various network
faults and malicious attacks, such as packet-dropping
and routing disruptions. Each class is well-balanced,
ensuring robust performance evaluation across all fault
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categories. The dataset provides feature-rich instances,
including metrics like node energy levels, packet
counts, delays, and routing information, offering
a realistic simulation of network scenarios. These
features were carefully pre-processed, normalized, and
split into training and testing sets to facilitate effective
model training and validation. This dataset serves as an
ideal foundation for evaluating the performance of fault
detection methods in complex WSN environments.

4.3. Performance Metrics

Fig. 3 illustrates the convergence behavior and
effectiveness of the RWOA. The initial phase, from
the first to the second iterations, shows a significant
drop in fitness value, indicating the algorithm’s
exploratory phase. From the second to the seventh
iterations, the plateau phase is marked by a plateau,
where the algorithm focuses on refining solutions
within a promising region. The further refinement
phase decreases slightly to 0.0267, indicating a near-
optimal solution and fine-tuning results. The graph
demonstrates the algorithm’s efficiency in narrowing
down the search space, the plateau phase, where
the algorithm focuses on exploitation, and the final
convergence, where the algorithm has converged
to a solution near the global optimum. This graph
demonstrates the algorithm’s ability to efficiently
find an optimal solution while avoiding unnecessary
computations beyond the point of diminishing returns.

The confusion matrix represents the performance
of a classification model across five classes: Normal,
Grayhole, Blackhole, TDMA, and Flooding (Fig. 4).
The diagonal elements indicate the correctly classified
instances, while off-diagonal elements represent
misclassifications. The model performs well overall,
with high accuracy for each class, as evidenced by
the large diagonal values. For example, normal has
11,857 true positives, with minimal misclassifications.

(RWO)

7

0 10 20 30 % 50
Number of Iterations

Fig. 3. Convergence behavior and effectiveness of the
rank-based whale optimization algorithm
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Similarly, grayhole achieves 11,885 correct
classifications, though 86 instances were misclassified
as blackhole and three as normal. The blackhole
class also performed well, with 11,950 true positives
and minor misclassifications. For TDMA, the model
correctly identified 11,695 instances, though there is
some confusion with normal, grayhole, and blackhole.
Finally, the Flooding class exhibited near-perfect
classification, with 11,991 correct predictions and no
significant misclassifications. The confusion matrix
highlights the model’s robustness but also reveals areas
for improvement, such as reducing misclassifications
between normal and TDMA and minimizing confusion
between grayhole and blackhole.

The AUC values for the five classes (0-4)
indicate the model’s excellent discriminatory ability
across all categories (Fig. 2). AUC values ranged from
0 to 1, with values closer to 1 representing superior
performance. Here, the AUC for class 0 (Normal) and
class 3 (TDMA) is 0.99, indicating that the model
can distinguish these classes from the others with
near-perfect accuracy. For class 1 (Grayhole), class 2

10000
Normal
8000
Grayhole -
]
©
P Blackhole "I 6000
2
'_
TDMA | 4660
Flooding
I 2000
© L 9 g o
£ [S] ) = =
E T g= o T
o > ~ - [ LLg
= £ ® o
6 3 e

Predicted label

Fig. 4. Confusion matrix
Abbreviation: TDMA: Time-division multiple access

A

Accuracy

0 20 40 60 80 100

Epoch

Loss

(Blackhole), and class 4 (Flooding), the AUC is a
perfect 1, demonstrating flawless classification for
these classes. This suggests that the model had no
false positives or negatives for classes 1, 2, and 4,
showing exceptional precision and recall. Overall, the
AUC values underscore the model’s high reliability
and effectiveness in differentiating between all classes,
with minimal room for improvement.

The accuracy and loss curves in Fig. SA and B
depict the model’s performance during training and
testing. In plot 5A, the accuracy curve steadily increases
during training, indicating that the model is learning
effectively from the data. The testing accuracy also
improves and stabilizes, closely aligning with the
training accuracy, suggesting good generalization and
minimal overfitting. In plot 5B, the loss curve decreases
over epochs for both training and testing, reflecting a
reduction in prediction errors as the model optimizes
its parameters. The convergence of training and testing
loss at low values confirms the model’s robust learning
process. A smooth and stable trajectory for both accuracy
and loss curves indicates that the model training is well-
tuned, with no signs of underfitting or overfitting, and
performs consistently on unseen test data.

Fig. 6 shows the performance metrics for training
and testing. With an overall accuracy of 99%, the
model performed exceptionally well in the testing
phase across all five classes of WSNs. With values
near 0.99 or 1.00, the model’s accuracy, recall, and
Fl-scores were continuously high, demonstrating its
capacity to accurately detect occurrences of each class
while reducing false positives and false negatives. With
a perfect score, the flooding class exhibited faultless
detection. The performance of other classes, such as
blackhole and grayhole, was also strong. Weighted and
macro average measures further support the model’s
balanced performance across classes. The model’s
outstanding performance during training and testing,
together with its ability to balance accuracy, recall, and
Fl1-score, shows its usefulness in real-world situations
where reliable and precise fault classification is required.
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Fig. 5. (A and B) Accuracy and loss curves
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Fig. 6. (A and B) Performance metrics for training and testing
Abbreviation: TDMA: Time-division multiple access
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Fig. 7. (A-D) Comparative analysis for performance metrics
Abbreviations: AOA: Angle or arrival; GB: Gradient boosting; KNN: K-nearest neighbor; RKOA-AEID: Red kite
optimization algorithm-average ensemble model for intrusion detection; PSO: Particle swarm optimization;
XG Boost: Extreme gradient boosting

4.4. Comparison Metrics

Fig. 7 shows the performance of various
methods, including RKOA-AEID (Alruwaili et al.,
2023), Adaboost (Aljebreen et al., 2023), gradient
boosting (Aljebreen et al., 2023), extreme gradient
boosting (Algahtani et al., 2019), KNN-angle of arrival
(Liu et al., 2022), KNN-particle swarm optimization
(Liuetal., 2022), and the proposed method, across four
evaluation metrics: accuracy, F1-score, specificity, and
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sensitivity (Table 1). The proposed method achieved
the highest accuracy (99%), demonstrating superior
reliability in fault detection. RKOA-AEID performed
well (98%), while Adaboost and KNN-particle swarm
optimization performed moderately (94%). Gradient
boosting, extreme gradient boosting, and KNN-angle
of arrival exhibited intermediate results (97%). The
proposed method excelled with a perfect Fl-score
(100%), indicating an exceptional balance between
precision and recall. Adaboost and gradient boosting


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/1J0S1.202510_9(5).0005

R. Gayathri, K.N. Shreenath, etc./Int. J. Systematic Innovation, 9(5), 56-70 (2025)

Table 1. Comparative chart of the proposed model with conventional methods

Methods Accuracy | Sensitivity | Specificity | F-score
Red kite optimization algorithm-average ensemble model for intrusion 98.94 75.33 96.45 79.52
detection (Alruwaili et al., 2023)
AdaBoost (Aljebreen et al., 2023) 95.69 69.22 95.00 76.13
Gradient booting (Aljebreen et al., 2023) 94.58 71.03 94.09 71.92
Extreme gradient boosting (Algahtani et al., 2019) 96.83 71.51 94.43 71.01
K-nearest neighbor-angle of arrival (Liu et al., 2022) 97.20 70.16 96.04 73.85
K-nearest neighbor-particle swarm optimization (Liu et al., 2022) 92.89 71.30 95.08 70.48
Proposed 99.25 98.74 99.32 98.39
lagged (75%), reflecting weaker handling of false Availability of Data
positives or false negatives. Extreme gradient boosting Not applicable.

and KNN-angle of arrival performed moderately
(97%). The proposed method consistently outperforms
all other techniques, achieving perfect F1, specificity,
and sensitivity scores and near-perfect accuracy.

5. Conclusion

This research presents a unified framework
for fault detection in WSNs that effectively
combines advanced noise filtering, optimized feature
selection, and a sophisticated DL architecture. The
proposed approach leverages a DNF technique with
adaptive thresholding to cleanse the data while
preserving its critical aspects, employs the RWOA
to select the most relevant features, and utilizes an
HADL model to capture both short-term and long-
term dependencies in sensor data. Experimental
evaluations of the WSN-DS confirm the framework’s
exceptional performance, achieving an accuracy
of 99.25%, sensitivity of 98.74%, specificity of
99.32%, and an F-score of 98.39%. These results
highlight the framework’s capacity to reliably detect
faults and reduce false alarms, ultimately enhancing
network reliability and extending the operational
lifespan of WSNs. The integration of these advanced
methodologies not only addresses existing challenges
in fault detection but also establishes a robust
foundation for future enhancements, including real-
time deployment and the incorporation of multi-
modal data.
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