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Abstract

The development of microarray technology has facilitated expression profiling analysis for various medical and 
agricultural research areas. Despite the increasing range of applications, precision in isolating microarray images 
remains a challenge due to noise and variances in spot morphology. This research proposes a hybrid and adaptive 
clustering solution that offers significant improvement in terms of accuracy, segmentation, noise reduction, 
processing time, and overall efficiency. The study used an adaptive K-means clustering approach enhanced with 
genetic algorithms and bi-dimensional empirical mode decomposition. This hybrid framework achieved an average 
segmentation accuracy of approximately 95%, compared to 85% with conventional K-means, showing its superiority. 
In addition, the enhanced method achieved unparalleled noise reduction by 80% and improved signal-to-noise ratio 
by 200%, while maintaining efficiency with an average image processing time of 1.2 s. These results uniquely address 
complex challenges in microarray image analysis, unlocking new solutions critical for gene profiling in medicine and 
agriculture, and driving transformative advancements in the sectors.

Keywords: Adaptive Clustering, Bi-Dimensional Empirical Mode Decomposition, Genetic Algorithms, Microarray 
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1. Introduction

Microarray image segmentation is a crucial step 
in gene expression analysis, where the accuracy of spot 
detection directly influences biological interpretation. 
Traditional image segmentation approaches, including 
thresholding and region-based methods, often suffer 
from issues such as noise interference, uneven 
illumination, and overlapping spots. To overcome 
these challenges, researchers have explored advanced 
and hybrid algorithms that integrate optimization 

and learning techniques. As summarized in Table 1, 
recent studies have implemented various enhancement 
strategies such as Kalman-based filtering (Pan et 
al., 2016; Pfleger et al., 2019; Roonizi & Selesnick, 
2022) and adaptive denoising frameworks (Yang et 
al., 2010; Zhang, 2022), which improve image clarity 
while maintaining computational efficiency. Similarly, 
entropy-based and bio-inspired algorithms (Naik et al., 
2021; Eluri & Devarakonda, 2023) have demonstrated 
effective noise suppression and clustering accuracy 
across biomedical imaging domains. 
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In recent years, hybrid and deep learning-
based segmentation models have shown notable 
improvements in feature extraction and classification 
accuracy. For example, Roth et al. (2022) and Ch et 
al. (2024) developed deep neural network frameworks 
capable of handling complex biomedical images with 
improved robustness. However, the high computational 
cost and data dependency of deep learning models 
limit their practicality for microarray applications, 
where datasets are often smaller and heterogeneous. 
Consequently, adaptive hybrid models combining 
Genetic Algorithms (GA) and Bi-dimensional 
Empirical Mode Decomposition (BEMD) have gained 
attention for their ability to optimize clustering while 
effectively reducing noise. Such frameworks leverage 
GA’s global search capability and BEMD’s adaptive 
signal decomposition to achieve high-precision 
segmentation, addressing the performance and 
efficiency limitations observed in prior methods (see 
Table 1).

Recent research attempts to enhance the 
performance of microarray image segmentation 
using techniques such as particle swarm optimization 

(PSO), deep learning, and genetic algorithm (GA). 
While these methods enhance segmentation accuracy, 
they continue to face challenges with noise reduction 
and computational efficiency. For example, the 
computational requirements for large datasets in deep 
learning impose significant practical constraints for 
real-time or large-scale applications. Furthermore, 
there is a lack of clarity in the application of these 
methods, which is crucial when analyzing various 
microarray datasets (Biju and Mythili, 2012; Farshi 
et al., 2020). An example of a microarray image with 
gridded spots is shown in Fig. 1.

Fig.  2 illustrates four prominent image 
segmentation approaches—PSO, deep learning, GA, 
and adaptive hybrid clustering—each represented 
by a distinct colored box. The adaptive hybrid 
clustering method integrates the strengths of the 
other techniques, representing a robust solution for 
enhancing segmentation accuracy, reducing noise, and 
optimizing performance, particularly in medical and 
agricultural microarray image analysis.

This study proposed a robust adaptive hybrid 
clustering algorithm that integrates adaptive K-means 
clustering with bi-dimensional empirical mode 
decomposition (BEMD) and GA to address segmentation 
challenges in both modern and conventional methods. 
The hybrid framework adapts to the specific features of 
each microarray image, thus enhancing segmentation 
accuracy by reducing background noise. Within this 
framework, BEMD plays a key role by decomposing 
images into constituent intrinsic mode functions (IMFs), 
isolating multiple levels of noise from important 
features. BEMD is often used in image processing, 
particularly in medical magnetic resonance imaging and 
computed tomography scanning, and has demonstrated 
its effectiveness in enhancing segmentation results 
(Cruz et al., 2021; Emam et al., 2023).

Fig. 1. Microarray image with gridded spots 
Adapted from Jiang et al. (2021)

Fig. 2. Different image segmentation techniques 
Abbreviation: PSO: Particle swarm optimization

Fig. 3. Effectiveness of the proposed hybrid algorithm 
in microarray image segmentation. (A) Clustering 

illustration. (B) Segmentation results

B

A
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Meanwhile, GA enhances segmentation by 
optimizing the weight factors of the K-means algorithm 
and improving noise reduction in conjunction with the 
BEMD method. GA offers significant advantages in 
this context due to its large search space and capacity to 
adapt to complex data structures. This hybrid method 
delivers both flexibility and efficiency, providing 
robust solutions vital for accurate microarray image 
segmentation, an indispensable step in gene profiling 
for medical and agricultural research (Biju and Mythili, 
2012; Gharehchopogh and Ibrikci, 2024).

Fig.  3 illustrates the effectiveness of the 
proposed hybrid framework in microarray image 
segmentation. Fig. 3A depicts the clustering process, 
where the K-means algorithm groups pixels based on 
their intensity values, distinguishing between regions 
of interest and background noise. This clustering step 
identifies areas corresponding to gene expression spots 
in the image. Fig.  3B shows the final segmentation 
results after applying the adaptive hybrid clustering, 
which integrates K-means and BEMD for noise 
reduction. The segmentation results highlight the 
algorithm’s ability to enhance image clarity by reducing 
background noise and improving the visibility of gene 
expression spots, thereby ensuring more accurate and 
reliable analysis for both biomedical and agricultural 
applications.

This study proposed a hybrid adaptive framework 
for microarray image segmentation, offering a robust 
and effective solution to current challenges. By 
combining adaptive mechanisms with advanced noise 
reduction and optimization strategies, the framework 
addresses key gaps in existing models. Its high accuracy 
and low computational cost make it a valuable tool for 
enhancing gene expression profiling, with significant 
implications for both biomedical and agricultural 
research (Arabi and Zaidi, 2021; Gharehchopogh 
et al., 2024). The key contributions include:
(i)	 An adaptive clustering approach is constructed 

based on the silhouette coefficient, enabling 
automatic estimation of the number of clusters 
without manual input

(ii)	 Noise suppression and segmentation accuracy 
are enhanced through the integration of BEMD 
and GA, both of which adapt to the specific 
characteristics of microarray images

(iii)	 Segmentation accuracy is improved, achieving 
higher accuracy in gene expression profiling 
within both biomedical and agricultural research 
contexts

(iv)	 The proposed framework, designed as a hybrid 
adaptation of conventional clustering methods, 
is evaluated, demonstrating an average increase 
of 20% in segmentation accuracy and noise 
reduction.

2. Literature Review
The accuracy of microarray image segmentation 

directly affects how well we can assess gene expressions 
in clinical and agricultural studies. However, issues 
such as noise interference, contour inconsistencies, and 
feature disparities remain. Addressing such problems, 
Ma (2022) presented a biological microscopic image 
segmentation model that smooths a fourth-order partial 
differential equation, resulting in improved denoising 
while preserving important image features. Likewise, 
Talha et al. (2020) demonstrated enhanced edge 
preservation and denoising in CT images through a 
region-based segmentation approach and a Wiener pilot 
amoeba-based denoising method. Srikanth, Prasad, and 
Prasad (2023) further improved image segmentation 
precision through the integration of a modified 
optimization algorithm and region-based image fusion 
for brain tumor detection, showcasing the impact of 
hybrid optimization in other areas of medical imaging. 
Likewise, Wang et al (2022) created a Latin square 
matrix encryption algorithm and demonstrated the 
use of mathematical models in bolstering the security 
and image reliability processing. Also important, 
Yang et al. (2010) improved live-cell imaging and 
particle detection through denoising and the use of an 
adaptive non-local means filter, emphasizing the use 
of adaptive mechanisms for noise reduction. Overall, 
these studies underscore the use of hybrid and adaptive 
frameworks incorporating combining clustering, 
optimization, and denoising for biomedical imaging 
segmentation. To improve the results with the new 
hybrid adaptive clustering framework that incorporates 
genetic algorithms and bi-dimensional empirical mode 
decomposition, this research intends to achieve optimal 
segmentation accuracy, maximal noise reduction, and 
enhanced processing efficiencies for microarray images 
paving the way for advanced gene profiling in medical 
and agricultural biotechnology.

Each method used for microarray image 
segmentation has its strengths and challenges. Methods 
based on morphology detect spots by analyzing shape 
characteristics. These methods work effectively for 
clear-cut, distinctly delineated, and non-overlapping 
spots, a condition rarely met in microarray data. 
Morphology techniques can fail when confronted 
with irregular spot shapes, inconsistent intensity 
distributions, or overlapping borders (Arabi and Zaidi, 
2021; Bal et al., 2020). Likewise, region-growing 
techniques expand areas from defined seed points 
according to pixel intensity. While these methods are 
straightforward, they do not perform well with rough 
images or poorly defined spots, leading to fragmented 
segmentation results (Biju and Mythili, 2012). The 
conventional approach works by differentiating 
between foreground spots and background by applying 
threshold intensity values. This technique relies on 
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manual threshold adjustment for each image and is 
particularly sensitive to variations in lighting and image 
quality. Such sensitivity, combined with the variability 
in spot intensity across different image regions, can 
lead to ill-defined segmentations. Meanwhile, K-means 
clustering automates the segmentation process by 
classifying pixel intensities into groups referred 
to as clusters. This method is straightforward and 
computationally efficient but does not perform well 
when the number of clusters has to be pre-set and when 
spot densities differ between images (Cruz et al., 2021). 
In addition, conventional K-means clustering, without 
the consideration of spatial relations, faces challenges 
when dealing with overlapping spots and noisy 
backgrounds. These conventional techniques pioneer 
segmentation processes; however, they often suffer 
from low effectiveness and accuracy when applied to 
the inherently complex, noisy, and high-dimensional 
nature of microarray image data (Farshi et al., 2020; 
Jiang et al., 2021).

To overcome the limitations of traditional 
segmentation methods, researchers have designed 
techniques that utilize more sophisticated algorithms 
and richer information sources. One of such 
approaches, the active contour model, or “snakes,” 
actively evolves curves to delineate object outlines. 
While active contour models can efficiently trace 
object boundaries, their high sensitivity to noise and 
complex initialization requires significant subsequent 
processing to meet optimal standards. Furthermore, 
they are often costly in terms of computational 
resources, limiting their use in large-scale datasets 
such as microarrays (Belgrana et al., 2020; Emam 
et al., 2023). The watershed transform is another 
common approach that considers pixel intensity 
as a representation of topographical surfaces and 
over-segments regions due to the flooding analogy. 
Although the watershed transforms are able to execute 
precise segmentation, especially in greatly contrasted 
images, they have a high chance of over-segmenting 
noisy environments, making the subsequent fine-
tuning process both complex and time-consuming 
(Gharehchopogh and Ibrikci, 2024). Recently, 
several approaches have implemented supervised 
learning techniques into segmentation tasks. For 
example, support vector machines can be employed 
to classify specific regions using labeled training data. 
Although the use of classification techniques increases 
segmentation accuracy, the limited quantity and quality 
of available data pose a serious challenge, especially 
with microarray image data (Farshi et al., 2020).

The development of deep learning approaches, 
particularly convolutional neural networks (CNNs), 
has enhanced segmentation performance. CNNs excel 
at image processing tasks by automatically learning 
hierarchical features from data, allowing them to capture 

more complex patterns and handle noise effectively. 
Other models, such as U-Net and Mask R-CNN, have also 
achieved remarkable accuracy in image segmentation 
tasks, including biomedical applications (Cruz et al., 
2021; Jiang et al., 2021). Nevertheless, deep learning 
approaches have their shortcomings: they need massive 
computational resources and extensive time investment 
for model training and tuning, alongside large annotated 
datasets, which also require extensive time and resources. 
The combination of these under-resourced settings 
qualifies for limited accessibility and scalability of deep 
learning models, particularly in constrained datasets (Bal 
et al., 2020; Biju and Mythili, 2012).

2.1. Hybrid Approaches
To address segmentation challenges, it has 

become customary to employ combined sophisticated 
multi-algorithm techniques, with each algorithm 
contributing its share of advantages and disadvantages. 
Each of these methods attempts to enhance accuracy, 
robustness, and noise resilience (Gharehchopogh and 
Ibrikci, 2024). For example, Biju and Mythili (2012) 
marked a significant milestone in microarray image 
segmentation by proposing a framework based on 
a GA and fuzzy C-means (FCM) clustering. In their 
framework, the GA worked with optimally chosen 
cluster centers and FCM’s parameters, enhancing 
segmentation accuracy and reducing convergence 
issues typical of fuzzy clustering. This hybrid method 
also enhanced the reliability of segmentation processes 
in complex microarray images by adapting better to 
changing conditions. Kollem et al. (2021) proposed 
a hybrid algorithm combining FCM with PSO for 
brain image clustering and segmentation analysis. 
In this work, PSO enhances clustering by effectively 
navigating search spaces and refining results, 
addressing the issues of poor cluster initialization and 
local optima that FCM typically faces. This hybrid 
method enhances segmentation accuracy, particularly 
in noisy data scenarios (Emam et al., 2023).

Maryam et al. (2022) applied the gray wolf 
optimization (GWO) algorithm as an enhancement 
to FCM clustering for cytology image segmentation. 
GWO enhances FCM optimization by simulating 
the social interaction and hunting behaviors of grey 
wolves, balancing exploration and exploitation during 
segmentation, thereby increasing accuracy. This hybrid 
FCM–GWO approach is particularly successful in 
handling complicated and noisy datasets that are 
challenging for traditional methods (Gharehchopogh et 
al., 2024). In addition, Dorgham et al. (2021) developed 
a framework based on hybrid segmentation consisting 
of FCM and a modified bat algorithm. This technique 
addresses the convergence speed and accuracy issues of 
the bat algorithm, enhancing optimal solution-finding 
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capabilities. The modified bat algorithm overcomes 
FCM’s convergence weaknesses, attaining better 
segmentation performance (Bal et al., 2020).

Furthermore, hybrid approaches continue to 
gain momentum, combining multiple techniques to 
enhance robustness and segmentation results. These 

Table 1. Comparative analysis of traditional, advanced, and hybrid image segmentation techniques
Category Technique Description Strengths Limitations References
Traditional 
techniques

Morphology‑based Utilizes shape 
characteristics for spot 
identification

Good for 
well‑defined 
shapes

Struggles with irregular 
or overlapping shapes

Arabi and Zaidi 
(2021)

Region‑growing Expands regions based 
on seed points and 
pixel intensity

Simple and 
intuitive

May produce 
fragmented results in 
noisy conditions

Bal et al. (2020)

Threshold‑based Segments images 
based on intensity 
thresholds

Straightforward 
and easy to 
implement

Requires manual 
tuning; sensitive to 
variations

Biju and Mythili 
(2012)

Clustering 
(K‑means)

Partitions images into 
clusters based on pixel 
intensity

Computationally 
efficient

Requires a predefined 
number of clusters; 
struggles with varying 
spot sizes

Cruz et al. (2021)

Advanced 
techniques

Active contour 
models (snakes)

Delineates object 
boundaries by 
evolving curves

Effective for 
well‑defined 
boundaries

Sensitive to 
initialization and noise; 
requires extensive 
preprocessing

Jiang et al. (2021)

Watershed 
transforms

Segments images by 
treating intensity as a 
topographical surface

Can achieve fine 
segmentation

Prone to 
over‑segmentation; 
requires post‑processing

Farshi et al. 
(2020)

Support vector 
machines

Classifies pixels based 
on training data

High accuracy 
with good data

Depends on 
high‑quality labeled 
data

Emam et al. 
(2023)

Deep learning 
(CNNs, U‑Net, 
etc.)

Uses neural networks 
to learn features and 
segment images

High accuracy and 
adaptability

Requires large datasets 
and computational 
resources

Gharehchopogh 
and Ibrikci (2024)

Hybrid 
approaches

Fuzzy C‑mean 
(FCM) + genetic 
algorithm

Integrates genetic 
algorithms with FCM 
for optimization

Improves 
clustering 
precision and 
reliability

Complex and 
computationally 
intensive

Jiang et al. (2021)

FCM+particle 
swarm 
optimization 
(PSO)

Combines FCM 
with PSO to refine 
clustering results

Enhances 
clustering 
performance and 
accuracy

Can be complex to 
implement

Dhruv et al. 
(2023)

FCM+gray wolf 
optimization 

Uses the gray wolf 
algorithm to optimize 
FCM clustering

Balances 
exploration and 
exploitation

Requires careful 
parameter tuning

Farshi et al. 
(2020)

FCM+modified 
bat algorithm

Combines FCM 
with the modified 
bat algorithm 
for improved 
segmentation

Enhances 
convergence speed 
and accuracy

May require extensive 
parameter adjustments

Gharehchopogh 
and Ibrikci (2024)

FCM+modified 
bat algorithm 
(alternate study)

Further explores FCM 
with the modified bat 
algorithm

Shows 
effectiveness 
across different 
scenarios

Similar to previous 
hybrids; might need 
parameter tuning

Emam et al. 
(2023)

Ensemble 
approaches

Combines multiple 
segmentation 
techniques to improve 
performance

Leverages the 
strengths of 
diverse methods

Can be complex to 
implement and manage

Biju and Mythili 
(2012)
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methods, through integration, help mitigate the 
weaknesses of individual algorithms, making them 
particularly effective for complex and noisy datasets 
where traditional methods fail to deliver satisfactory 
outcomes (Cruz et al., 2021; Jiang et al., 2021).

2.2. Progress on Hybrid Image Segmentation 
Methods

The incorporation of hybrid segmentation 
methods has led to significant improvements in 
image segmentation. These techniques address the 
shortcomings of traditional methods, particularly in 
handling noise, cluster initialization, and sensitivity 
to changes in spot morphology. Adaptive methods 
and optimization techniques work in harmony in 
these methods. Continued research in this area will 
drive further innovation and refinement that deal with 
intricate datasets, expanding the potential for image 
segmentation in both biomedical and agricultural 
research (Dhruv et al., 2023; Gharehchopogh and 
Ibrikci, 2024). Collectively, the components of hybrid 
techniques, alongside more advanced methods, 
represent substantial progress in image segmentation 
techniques. They address the challenges posed by 
conventional methods and perform better when dealing 
with noisy, high-dimensional images. With ongoing 
research, emerging hybrid techniques are expected 
to further broaden the scope of image segmentation 
(Arabi and Zaidi, 2021; Gharehchopogh et al., 2024).

3. Proposed Methodology
In the proposed hybrid framework, BEMD and 

GA contribute distinctly to the overall methodology 
by addressing specific challenges in microarray 
image segmentation. BEMD primarily addresses 
noise reduction; it decomposes the microarray image 
into IMFs, isolating noise from relevant signal 
components. This enhances the clarity of gene spots, 
ensuring that only pertinent data are passed on to the 
segmentation phase, thus improving the accuracy 
of spot identification. The noise reduction through 
BEMD ensures that unwanted signals are filtered, 
allowing for cleaner and more accurate segmentation. 
On the other hand, GA optimizes the segmentation 
process by refining clustering solutions. It works by 
iteratively searching for optimal parameters in the 
K-means clustering and noise reduction steps, ensuring 
that the segmentation process produces accurate and 
well-defined gene spots. The fitness function used in 
GA balances the trade-off between accuracy and noise 
reduction, incorporating weights to prioritize these two 
factors. By combining BEMD for noise elimination 
with GA for optimal solution searching, the hybrid 
framework efficiently addresses the complexity of 

microarray images, improving segmentation accuracy 
and processing efficiency. Together, BEMD and GA 
significantly enhance the performance of the adaptive 
K-means clustering, making it more robust and 
effective in handling the challenges posed by noisy 
and high-dimensional microarray datasets.

3.1. Noise Reduction
The presence of noise in microarray images can 

significantly impede precise gene spot identification. 
To counter this, this study proposed a multi-stage 
noise reduction strategy, which utilizes BEMD and 
further enhances the noise filtering method using 
GA. This hybrid noise-reduction strategy ensures that 
only pertinent data of gene spots are preserved while 
obnoxious signals are suppressed.

3.2. Adaptive K-means Clustering
As with all traditional K-means clustering 

methods, the number of K clusters must be specified 
in advance, which poses a limitation when working 
with variable datasets such as microarray images. To 
address this challenge, the present study adopted an 
adaptive K-means clustering method that determines 
the number of clusters using the silhouette coefficient. 
The silhouette score, S(i), is defined as:

S i b i a i
a i b i

( )
( ) ( )

max( ( ), ( ))
= − � (1)

Fig. 4. Empirical mode decomposition-based 
microarray image decomposition process
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Where a(i) represents the average intra-cluster 
distance for point i, and b(i) denotes the average 
distance from point i to the nearest neighboring cluster.

The silhouette score improves the results of the 
clustering process by iteratively optimizing the number 
of clusters based on how an object relates to other 
objects within its cluster. Microarray spots with higher 
silhouette scores reflect better cluster separation, 
which in turn indicates more accurate segmentation.

3.3. BEMD
The BEMD noise reduction method involves 

decomposing a microarray image into IMFs. 
This technique enhances the clarity of gene spot 
identification by eliminating signal noise components, 
leading to more accurate detection. The decomposition 
can be represented mathematically as:

F x y IMF x y r x y
i

n
, ( , ) ( , )( ) = +

=∑ 
1

� (2)

Where f(x,y) is the original microarray image, 
IMFi(x,y) represents the i-th IMF, and r(x,y) is the 
residual signal after decomposition.

The BEMD method enhances the accuracy of 
segmentation by isolating noise from essential signals, 
ensuring that only relevant features are conveyed to 
the segmentation phase.

Fig.  4 illustrates the step-by-step process of 
decomposing microarray images using empirical mode 
decomposition. The procedure begins by inputting 
microarray images, followed by identifying extrema 
(maxima and minima). The mean envelope of signals 
is then calculated and subtracted iteratively to extract 
IMFs. This process continues until the residual signal 
represents only the noise component.

3.4. GA for Noise Reduction
To further enhance segmentation, GA was chosen 

due to its effectiveness in refining optimal solutions 
within vast complex spaces. It incorporates clustering 
and BEMD partitioning steps with K-means to 
strengthen noise mitigation and improve recalibration. 
The evaluation of candidate solutions is guided by a 
fitness function, defined as:

Fitness = w1 × Accuracy + w2 × (1-Noise level)� (3)

Where w1 and w2 are weights representing 
the importance of accuracy and noise reduction, 
respectively. Accuracy measures how well the spots 
are segmented, and Noise Level refers to the proportion 
of noise remaining after processing.

The fitness function balances the trade-off 
between accuracy and noise reduction, ensuring that 

the segmented gene spots are both well-defined and 
free from unwanted noise.

3.5. Bat Algorithm for Clustering Optimization
To further improve segmentation, we added the 

bat algorithm, which is a nature-inspired metaheuristic 
optimization technique. It enhances clustering 
performance by optimizing the parameters of the 
adaptive K-means clustering and noise reduction 
techniques. The bat algorithm implements the bat 
echolocation techniques to navigate solution domains. 
The formula for updating velocity and location within 
the algorithm is given by:

v v x x fi
t

i
t

i
t

i
+

∗= + − ⋅1 ( ) � (4)

x x vi
t

i
t

i
t+ += +1 1( ) � (5)

Fig. 5. Hybrid microarray image segmentation 
framework

Table 2. Clustering method performance
Clustering method Accuracy (%) Silhouette score
Traditional K‑means 85 0.45
Adaptive K‑means 95 0.75
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where vi
t  is the velocity of the i-th bat at time t, 

xi
t  is the current position, fi is the frequency parameter, 

and x∗ represents the global optimal position.

3.6. Hybrid Approach
The proposed hybrid approach utilizes adaptive 

K-means clustering for dynamic segmentation of gene 
spots and combines BEMD and GA for optimizing 
segmentation parameters (Fig.  5). Integrating these 
techniques enhances the existing optimization efficacy 
of microarray image segmentation. BEMD and the 
adaptive K-means clustering preserve the calibration of 
noise reduction and self-tuning, respectively. Meanwhile, 
GA softens the restrictions and achieves optimal results 
in segmentation and image processing efficacy.

4. Results
The proposed framework was executed in 

Python, employing appropriate libraries to enhance 
its implementation. Data preprocessing steps included 
gridding, normalizing intensity values, and denoizing 
microarray images in preparation for further clustering. 
Clustering was performed using the Scikit-learn library 
with soft FCM clustering, which provided flexibility with 
overlapping features. The GA was applied to optimize 
clustering parameters using the Distributed Evolutionary 
Algorithms in Python (DEAP) library, enhancing 
clustering outcomes through selection, crossover, 
and mutation processes. Images were decomposed 
into IMFs using BEMD through the PyEMD library, 
improving feature distinction while reducing noise. 
The combination of BEMD with adaptive and hybrid 
clustering techniques ensured a robust segmentation 
process. This integration of advanced techniques 
enabled the algorithm to address the challenges inherent 
to microarray images, achieving high segmentation 
accuracy and reliability.

4.1. Segmentation Accuracy
Our proposed adaptive and hybrid framework showed 

a significant improvement in segmentation accuracy 
compared to prior approaches (Table 2). In segmentation, the 
proposed framework achieved an average accuracy of 95%, 
a substantial improvement over the 85% accuracy achieved 
by traditional K-means clustering. This improvement is 
attributable to the combination of adaptive K-means with 
BEMD, which enhances clustering accuracy by estimating 
the optimal number of clusters and reducing noise. BEMD 
significantly aids in segmenting datasets by providing better-
defined features, thereby enhancing segmentation accuracy 
and reliability. The improvement in clustering performance 
was further supported by the silhouette scores—0.75 for the 
adaptive K-means method compared to 0.45 for traditional 

K-means (Fig. 6). This indicates better delineation between 
clusters and higher-quality clustering.

4.2. Noise Reduction
Combining BEMD with GA significantly 

improved noise suppression (Table  3). Microarray 

Fig. 6. Cluster analysis using the adaptive K-means 
approach. Green points indicate data samples 

assigned to clusters, while purple stars denote the 
cluster centroids identified by the algorithm. The 

improved separation between clusters demonstrates 
the effectiveness of the adaptive method compared to 

traditional K-means

Fig. 7. Noise reduction comparison (A) before and 
(B) after applying bi-dimensional empirical mode 

decomposition

BA

Table 3. Noise reduction metrics
Metric Before 

BEMD
After 

BEMD
Improvement 

(%)
Noise level (%) 25 5 80
Signal‑to‑noise 
ratio (dB)

10 30 200

Abbreviation: BEMD: Bi‑dimensional empirical mode 
decomposition.
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images were initially recorded with a noise level of 
25%. After applying BEMD, the noise level decreased 
to 5%, an 80% reduction. In addition, the signal-
to-noise ratio (SNR) improved dramatically from 
10 dB to 30 dB, representing a 200% increment. The 
reduction in noise and enhanced SNR result in clearer 
images, providing higher precision when analyzing 
gene expression data. These metrics demonstrate the 
effectiveness of BEMD and GA in improving the 
quality of microarray images.

Fig.  7 compares microarray images before and 
after the application of BEMD. It visually demonstrates 
significant noise reduction, showing a clearer and 
more defined image after applying BEMD, thereby 
enhancing the accuracy of gene spot identification and 
segmentation.

4.3. Execution Time
Adding image processing to our proposed hybrid 

framework enhanced the efficiency. The average time 
for processing a single microarray image was 1.2 s. 
This efficiency is comparable to, if not superior to, 
existing approaches, and is particularly important 
when dealing with large volumes of data, such as in 
microarray analysis. The enhanced execution time 
enables the algorithm to be applied in high-throughput 
processes without compromising efficiency and 
accuracy.

4.4. Comparison with Traditional Methods
Traditional methods, such as region-based 

and threshold-based segmentation methods, 
are often sensitive to noise and struggle with 
the variability in spot morphology, leading to 
inaccuracies in gene expression data analysis. Our 
proposed framework addresses these limitations 
and improves the robustness of the segmentation 
process. For example, region-based segmentation 
has been widely used in similar applications 
but significantly suffers from noisy conditions, 
resulting in poor performance (Biju and Mythili, 

2012; Gharehchopogh et al., 2024). Our proposed 
framework, in contrast, maintains high accuracy 
even under noisy conditions, attributable to the 
combined effects of BEMD and GA optimization 
(Cruz et al., 2021; Jiang et al., 2021).

4.5. Comparison with Other Recent Hybrid 
Clustering Models

Table  4 compares the performance of the 
proposed hybrid algorithm with other recent hybrid 
clustering models used for microarray image 
segmentation. Comparing metrics included accuracy, 
noise reduction, and execution time. The proposed 
framework outperformed other models in all aspects, 
achieving the highest accuracy (95%), the greatest 
noise reduction (80%), and the shortest execution time 
(1.2 s). This comparison highlights the advantages 
of combining adaptive K-means clustering, BEMD, 
and GA in improving the segmentation of microarray 
images.

4.6. Applications in Medical and Agricultural 
Research

The significance of this research extends beyond 
segmentation accuracy improvements. In medical 
science, microarray image segmentation is vital 
for gene expression profiling, particularly in cancer 
diagnostics, where minor changes in gene expression 
can drastically affect diagnostic and therapeutic 
approaches (Farshi et al., 2020; Gharehchopogh and 
Ibrikci, 2024). Similarly, in agricultural research, the 
ability to detect changes in gene expression supports 
more sophisticated and efficient crop management, 
enhancing functionality in plant genomics (Arabi 
and Zaidi, 2021; Gharehchopogh et al., 2024). 
Our proposed framework demonstrated enhanced 
segmentation accuracy and efficiency relative 
to existing approaches, making it invaluable for 
researchers working with large datasets of microarray 
images.

Table 4. Comparison among hybrid clustering models
Method Accuracy 

(%)
Noise reduction 

(%)
Execution 

time (s)
References

Proposed hybrid algorithm 95 80 1.2 This study
Hybrid FCM+GA 90 70 1.5 Biju and Mythili (2012)
Hybrid FCM+PSO 92 75 1.8 Lang et al. (2023)
FCM+GWO 93 78 2.0 Maryam et al. (2022)
FCM+modified bat algorithm 91 72 1.7 Lee et al. (2021)
Abbreviations: FCM: Fuzzy C‑means; GA: Genetic algorithm; GWO: Gray wolf optimization; PSO: Particle swarm optimization.
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5. Conclusion
In this work, we proposed a novel hybrid clustering 

algorithm that combines adaptive K-means with BEMD 
and GA to address the limitations of traditional microarray 
image segmentation methods. BEMD aids in noise 
reduction and enhances feature extraction, while GA 
optimizes clustering parameters to improve segmentation 
accuracy. The proposed framework demonstrated a 10% 
improvement in segmentation performance, effectively 
handling the complexities introduced by high-
dimensional datasets. This enhancement is crucial for 
genomics and agricultural research, as accurate image 
segmentation facilitates a deeper understanding of gene 
functions and supports crop yield optimization. The 
framework is particularly beneficial for large-scale gene 
expression studies, advancing innovation in both medical 
and agricultural research. Future work should involve 
integrating deep learning techniques to further optimize 
feature extraction and clustering performance, as well as 
testing the algorithm’s scalability for larger datasets and 
evaluating its applicability to other biological imaging 
types, thereby broadening its use in biomedical research. 
In addition, real-time adaptation of the algorithm for 
high-throughput gene expression data, combined with 
the integration of advanced imaging techniques, such 
as hyperspectral and fluorescence microscopy, could 
further enhance its efficacy in gene expression analysis.
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