
DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

23

A graphics processing unit-based parallel simplified swarm
optimization algorithm for enhanced performance and precision

Wenbo Zhu1, Shang-Ke Huang2, Wei-Chang Yeh2,3*, Zhenyao Liu4, Chia-Ling Huang5

1School of Mechatronical Engineering and Automation, Foshan University, Foshan, Guangdong, China
2Integration and Collaboration Laboratory, Department of Industrial Engineering and Engineering Management,

College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
3Department of Industrial and Systems Engineering, College of Electrical Engineering and Computer Science,

Chung Yuan Christian University, Taoyuan, Taiwan
4School of Economics and Management, Taizhou University, Taizhou, Jiangsu, China

5Department of International Logistics and Transportation Management, School of Transportation and Tourism,
Kainan University, Taoyuan, Taiwan

*Corresponding author E-mail: wcyeh@ie.nthu.edu.tw

(Received 13 January 2025; Final version received 02 August 2025; Accepted 04 August 2025)

Abstract

Graphics processing units (GPUs) have emerged as powerful platforms for parallel computing, enabling personal
computers to solve complex optimization tasks effectively. Although swarm intelligence algorithms naturally lend
themselves to parallelization, a GPU-based implementation of the simplified swarm optimization (SSO) algorithm has
not been reported in the literature. This paper introduces a compute CUDA-SSO algorithm on the CUDA platform,
with a time complexity analysis of O (Ngen × Nsol × Nvar), where Ngen is the number of iterations, Nsol is the
population size (i.e., number of fitness function evaluations), and Nvar represents the required pairwise comparisons.
By eliminating resource preemption of personal best and global best updates, CUDA-SSO significantly reduces
the overall complexity and prevents concurrency conflicts. Numerical experiments demonstrate that the proposed
approach achieves an order-of-magnitude improvement in run time with superior solution precision relative to central
processing unit-based SSO, making it a compelling methodology for large-scale, data-parallel optimization tasks.

Keywords: Compute Unified Device Architecture, Graphics Processing Unit, Parallelism, Simplified Swarm
Optimization, Swarm Intelligence Algorithms

1. Introduction
In recent years, graphics processing units

(GPUs) have significantly impacted high-performance
computing, particularly for data- and compute-
intensive applications. Originally designed to
accelerate real-time three-dimensional graphics,
GPUs now offer a parallel architecture that can handle
massive throughput in general-purpose scientific
computing. Thanks to the availability of thousands
of arithmetic logic units (ALUs) and large memory
bandwidth, personal computers equipped with modern
GPUs have become highly effective platforms for

performing large-scale computations (AlZubi et al.,
2020; Hachaj & Piekarczyk, 2023). This evolution
has fueled a surge of interest in GPU-accelerated
algorithms across diverse fields, including medical
image processing (Corral et al., 2024; Mittal & Vetter,
2014), energy optimization (Mortezazadeh et al.,
2022), and geospatial modeling (Hager et al., 2008).

One notable class of algorithms that can benefit
significantly from the massive parallelism of GPUs is
swarm intelligence (SI). Swarm intelligence algorithms
(SIAs), such as particle swarm optimization (PSO),
genetic algorithms (GA), and fireworks algorithms,

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

24

draw inspiration from natural phenomena (e.g., bird
flocking, fish schooling, and evolutionary processes).
By orchestrating collective behaviors, these methods
iteratively refine candidate solutions within a high-
dimensional search space (Abbasi et al., 2020; Navarro
et al., 2014; NVIDIA, n.d.). SIAs naturally lend
themselves to parallel implementations, since core
operations such as fitness evaluation and local solution
updating occur at the per-particle or per-agent level,
often with minimal dependency among individuals.
Prior studies have documented considerable speedups
when porting SIAs to GPU architectures (Tan & Ding,
2015; Yeh, 2017; Yeh & Wei, 2012; Yildirim et al.,
2015), highlighting the strong synergy between swarm
parallelism and GPU hardware concurrency.

Despite the demonstrated success of GPU-based
SIAs, one variant, simplified swarm optimization
(SSO), has received limited attention on modern parallel
platforms. Since its inception in 2009 (Lee et al., 2012),
SSO has proven to be an effective population-based
search method, praised for its conceptual simplicity
and robust performance on real-world optimization
tasks (Corley et al., 2006; Luo et al., 2019; Yeh, 2015).
However, existing research on SSO has primarily
examined serial (central processing unit [CPU]-based)
implementations, leaving a conspicuous gap regarding
its parallel potential. By focusing on SSO, researchers
can harness its inherently straightforward swarm-update
rules to realize high degrees of concurrency. Moreover,
the method’s minimal parameter requirements and
flexible encoding scheme make it a compelling
candidate for GPU-based large-scale optimization.

To address this gap, we propose a compute unified
device architecture (CUDA) SSO (CUDA-SSO)
framework under the NVIDIA CUDA environment.
Departing from sequential SSO procedures, CUDA-
SSO capitalizes on concurrent kernel launches to
distribute the computational workload across thousands
of GPU threads. This design not only accelerates
fitness evaluations, typically the most time-consuming
step in swarm algorithms, but also introduces a parallel
update mechanism to circumvent resource-preemption
issues associated with personal best (pBest) and
global best (gBest) states in swarm-based searches.
By carefully encapsulating data in global memory and
minimizing CPU–GPU data transfers, we demonstrate
both improved solution quality and a drastic reduction
in overall execution time.
The main contributions of this paper are:
(i)	 A novel GPU-based SSO framework (CUDA-

SSO) that adopts data-parallel kernels and
reduces the theoretical time complexity of swarm
search steps.

(ii)	 A discussion of resource conflict avoidance by
re-structuring personal and gBest updates in a
parallel context.

(iii)	 A comprehensive evaluation of standard
benchmark functions, showcasing an order-of-
magnitude speedup in run time, accompanied by
higher solution accuracy than CPU-based SSO
implementations.
The remainder of this paper is organized as

follows. Section 2 presents an overview of the
classical SSO algorithm, the fundamentals of general-
purpose GPU computing, and related GPU-based
SIAs. Section 3 details the proposed CUDA-SSO
algorithm, including its kernel-based design, memory
model, and theoretical time complexity analysis.
Section 4 provides experimental results with various
benchmark functions, comparing performance and
precision against the baseline CPU-based SSO.
Finally, Section 5 summarizes the findings, discusses
potential improvements, and outlines directions for
future work.

2. Background
Recent advances in high-performance computing

and optimization have witnessed the integration of
diverse approaches such as SI, evolutionary strategies,
and gradient-based search methods. In particular,
SIAs offer decentralized collective search capabilities,
while gradient descent (GD) relies on local derivative
information to iteratively refine candidate solutions.
Understanding how these paradigms intersect—
or diverge—can shed light on algorithmic design
principles that balance global exploration with local
exploitation. This section introduces SSO, a data-
parallel swarm algorithm noted for its streamlined
update rules. We then highlight key distinctions
between GD and swarm-based approaches, discuss
the essentials of general-purpose GPU (GPGPU)
computing, and conclude with an overview of relevant
GPU-based SIAs to contextualize the motivations
behind our work on CUDA-SSO.

2.1. SSO
SSO was initially proposed by Yeh (2009) as a

lightweight yet robust variant of SI, offering a balance
between algorithmic simplicity and practical
performance. Unlike more elaborate SIAs (e.g., PSO
with velocity–position updates or GA with crossover–
mutation operators), SSO employs a small set of
parameters (Cw, Cp, and Cg) that guide the sampling of
new solutions from each particle’s current state (xij

t),
pBest (pij

t), and gBest (gj). This approach obviates the
need for velocity vectors or mutation rates, reducing
the parameter-tuning overhead that can complicate
other SIAs.

Fundamentally, each iteration of SSO can be
broken into:

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

25

(i)	 Solution update: For each solution i and variable
j, the new solution xij

t()+1 is drawn from one of
three sources—current solution, pBest, or gBest
based on probabilities (Cw, Cp, and Cg).

(ii)	 Fitness evaluation: Each updated particle is
assigned a fitness score xij

t()+1 .
(iii)	 Best-value updates: If f(Xi) is better than

a particle’s pBest, it is replaced. If f(Xi)
outperforms the current gBest, it is updated
accordingly.

2.1.1. Fundamental concepts and update strategy
SSO operates over a population

X ii
t | , , ,= …{ }1 2 Nsol , where X x x xi

t
i
t

i
t

i m
t= (, ,...,), , ,1 2

is a vector representing the ith candidate solution at
generation t and xi j

t
, is the jth variable in Xi

t for t = 1,
2,…, Ngen and i = 1, 2,…, Nsol. Two supporting data
structures track the algorithm’s progress:
(i)	 pBests: Pi = (pi,1,pi,2.,pi,m): The historically best

position of each particle, reflecting individually
optimal solutions found over previous iterations.

(ii)	 gBest: PgBest = (g1,g2.,gm): The optimal solution
observed across the entire population.
Within each iteration, SSO applies a simple step

function to update the value of each variable xi j
t
, in

the solution Xi
t . As shown in Eq. (1), a random

number ρ is a random value drawn from a continuous
distribution ranging from 0 to 1, which drives the
selection among four possibilities: retaining the current
value xi j

t
, , adopting pi,j, adopting gj, or performing no

update.

x

x if C c

p if C C C c

g if C
i j
t

i j
t

w w

i j w p w p

j
,

,

,

� ,

� ,
+ =

∈ =)
∈ = +)
∈

1

0ρ

ρ

ρ pp g p g

g

C C c

x if C

,

,

= +)
∈ )













 ρ 1

� (1)

Here, pi,j denotes the jth coordinate of the pBest
of the ith solution, and gj represents the corresponding
coordinate in gBest. The relative magnitudes of
(Cw, Cp, and Cg) balance exploration (i.e., adopting
global or pBests) against exploitation (i.e., retaining
current values). This compact parameterization
facilitates a more controlled search dynamic than in
many other SIAs.

2.1.2. Advantages of SSO over genetic algorithms
Genetic algorithms have historically been a

cornerstone of evolutionary computation, relying on
crossover and mutation operations to evolve solution
populations. However, SSO can frequently perform

better in certain problem classes due to its simpler
update mechanism and more focused parameter space.
Key comparative advantages of SSO include:
(i)	 Reduced parameter tuning: Traditional GAs

demand meticulous adjustment of crossover rates,
mutation probabilities, and selection schemes. By
contrast, SSO relies on three probabilities (Cw,
Cp, and Cg) to guide each variable’s update. This
hyperparameter reduction often translates into
faster and more reproducible experimentation,
minimizing the risk of suboptimal tuning.

(ii)	 Potentially faster convergence: In SSO,
particles can directly adopt globally optimal
positions, whereas GAs depend on randomized
genetic operators to spread promising traits.
Consequently, SSO may converge more rapidly
on certain continuous or weakly multimodal
functions, mainly when the objective landscape
permits direct exploitation of high-fitness
regions.

(iii)	 Implementation simplicity: GA-based crossover
and mutation operators can become complicated
when dealing with high-dimensional or
heterogeneous solution representations. SSO’s
step-function update—requiring only a few
lines of code—facilitates implementation clarity,
reducing the likelihood of design or coding
errors.

(iv)	 GPU suitability: Although GAs can be parallelized,
SSO’s probabilistic mechanism, wherein each
variable is updated according to a small set of
global or pBests, typically presents fewer data
dependencies across particles. This structure
lends itself well to massive parallelization on
GPUs, making SSO an attractive option for large-
scale optimization tasks in high-performance
computing environments.
Hence, SSO offers a comparatively

straightforward and potentially more consistent
pathway to large-scale optimization, particularly when
research or industrial constraints limit tuning resources
or demand high solution fidelity within compressed
timeframes.

2.1.3. SSO flowchart
SSO’s simplicity has proven advantageous

in several applications. For instance, Chung &
Wahid (2012) and Yeh (2012; 2013) demonstrate
its effectiveness in tackling complex real-world
tasks such as reliability design and feature selection.
Further refinements, such as orthogonal SSO (Yeh,
2014), reinforce the adaptability of SSO’s framework.
However, although prior literature confirms SSO’s
suitability for large-scale research, most studies have
employed CPUs, where time complexity grows rapidly

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

26

with the population size and dimensionality. This
motivates the pursuit of a GPU-based parallelization
strategy that can leverage SSO’s inherent data-parallel
characteristics.

Algorithm 1 outlines the typical CPU-based SSO
flow. Each iteration updates particles by sampling
the step function, evaluates the fitness value for
each particle, and updates pBests and gBest if any
improvement is found. Although CPU-SSO can
yield excellent results for moderate-scale problems,
it becomes slow when the population and number of
variables are large.

Algorithm 1. The typical CPU-based SSO
Initialize:
 Nsol = 50, Nvar = 30, Ngen = 100
 Var_max = 5.12, Var_min = -5.12
 sol = Nsol × Nvar
 pBests = Nsol × Nvar
 gBest = 0
 Cw = 0.2, Cp = 0.5, Cg = 0.8
 explorationTime = 0

while explorationTime ≤ cpuTimeLimit do
 for iter in 1 to Ngen do
 �stepFunc(sol, pBests, gBest, randNum(Var_max,

Var_min))
 evaluate(solF, pF, gF)
 if solF < pF then pBests(i) = sol(i)
 if solF < gF then gBest = sol(i)
 end if
 end if
 end for
end while

2.2. General-Purpose GPU Computing
Modern GPUs were originally engineered

to accelerate real-time three-dimensional graphics
tasks such as rasterization and shading. Over time,
these architectures evolved into GPGPU (Hussain
et al., 2016), wherein highly parallel GPU hardware
is repurposed to handle a variety of data-intensive
computations. By distributing large workloads among
thousands of arithmetic cores, developers offload
parallel tasks to the GPU while reserving more
complex, serial procedures for the CPU.

2.2.1. Execution model (CUDA framework)
NVIDIA’s CUDA (NVIDIA, n.d.) extends C/

C++ to enable heterogeneous computing. In CUDA,
the following function types determine where (CPU
vs. GPU) and how (serial vs. parallel) code is executed:
(i)	 Host functions: Host code is defined in C/

C++ and runs on the CPU. It is responsible for
high-level logic, memory allocation, and kernel
launch.

(ii)	 Kernel functions: GPU kernels are invoked
by the CPU but executed on the GPU, and
are subdivided into thread blocks and further
organized into warps of 32 threads, following
the single instruction, multiple threads paradigm.
They are ideal for data-parallel workloads such
as fitness evaluations or array/vector operations.

(iii)	 Device functions: Device functions are defined
and executed only on the GPU and are typically
called from within kernel functions to factor out
repeated computations.
In this model, thousands of concurrent threads

can be spawned to run the same kernel, allowing GPUs
to efficiently process large, independent datasets.

2.2.2. Compute unified device architecture
memory hierarchy

Compute Unified Device Architecture’s memory
model separates storage into multiple tiers, each
balancing capacity and speed.
(i)	 Registers: Per-thread registers provide high-

speed storage and are best suited for frequently
accessed variables that do not exceed the register
file capacity.

(ii)	 Shared memory: On-chip shared memory
allocated per block enables fast data exchange
among threads in the same block and is
particularly useful for shared computations,
partial sums, and other cooperative tasks where
multiple threads access and modify the same
data.

(iii)	 Global memory: Off-chip global memory
provides large-capacity storage accessible by all
threads but has relatively high latency compared
to on-chip resources, making efficient access
patterns (e.g., memory coalescing) essential to
achieve high throughput.

(iv)	 Constant and texture memory: Read-only caches
accelerate common look-ups and are helpful
when all threads repeatedly use the same constant
or when two-dimensional array access patterns
can be optimized via texture hardware.
High-performance GPU applications often

involve coalescing memory accesses, judiciously
using shared memory, and minimizing branch
divergence (warp divergence). These considerations
ensure that multiple threads fetch contiguous elements
simultaneously and execute consistent instruction
paths whenever possible.

2.2.3. Data transfers and central processing unit-
GPU coordination

Since the CPU and GPU have separate memory
spaces, data must typically be transferred via the

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

27

Peripheral Component Interconnect Express (PCIe)
bus. Although essential for many GPGPU workflows,
these transfers introduce non-negligible latency.
Strategies to reduce transfer overhead include:
(i)	 Batching data: Copying large chunks of data at a

time rather than frequent small transfers.
(ii)	 Asynchronous transfers: Overlapping data

transfers with kernel execution improves device
utilization.

(iii)	 Unified Memory: Leveraging CUDA’s managed
memory features to let the runtime handle page
migrations between CPU and GPU, albeit with
some overhead for page-fault handling.

2.2.4. Implications for SIAs
SIAs—including PSO, GA, Firefly Algorithm,

and SSO—naturally benefit from GPGPU acceleration
due to their population-based structure. Each
individual (particle, agent, or chromosome) can be
evaluated in parallel, and gBest values can be updated
in a relatively small overhead step.
(i)	 Fitness evaluations: Commonly, the most

significant computational bottlenecks can be
massively parallelized by assigning a subset of
particles (or subdimensions) to separate threads
or warps.

(ii)	 Update mechanisms: Since SIA updates often
involve reading global parameters (e.g., best
solutions) and then writing back updated values
for each particle, careful design of coalesced
memory accesses and thread synchronization
(e.g., to avoid race conditions when writing to a
gBest value) is critical.

(iii)	 Data dependencies: Many SIAs only require
limited information exchange—such as neighbor-
based or globally best-based communication—so
the parallel workload is generally well-defined.
Nonetheless, if a swarm’s communication
topology is complex (e.g., hierarchical or
multiswarm structures), the kernel must
incorporate additional synchronization steps or
multiple kernel launches to handle inter-group
interactions without causing warp divergence or
data hazards.
When population sizes or problem dimensions

become large, GPU-enabled SIAs can harness
thousands of parallel threads across multiple
streaming multiprocessors (SMs), substantially
reducing run time relative to CPU-only approaches.
Consequently, adopting CUDA or similar frameworks
for SIAs—while paying close attention to memory
usage, thread management, and synchronization—can
yield significant speedups in large-scale optimization
scenarios. Synchronization in CUDA refers to
coordinating the execution of threads to wait for each

other at specific points—usually to ensure that data
dependencies are respected (i.e., one thread does not
read a value before another finishes writing it).

2.3. GPU-Based SIAs Implementation
Parallelization of SIAs on GPUs leverages the

natural data-parallel structure of these methods. Within
each iteration, every swarm particle (or agent) usually
updates its position, evaluates its objective function,
and exchanges information with other particles
according to the algorithm’s communication model.

2.3.1. An Overview of notable GPU-based SIA
Table 1 provides an overview of notable GPU-

based SIAs, detailing which functions were ported to
GPU kernels in representative studies. The summarized
methods include standard and Euclidean PSO (Tsutsui
& Fujimoto, 2009; W. Zhu, 2011), multichannel PSO
(Krömer et al., 2011), multi-objective Gas (Wong,
2009; H. Zhu et al., 2011), and GA/differential-
evolution hybrids (Mussi et al., 2011; Ruder, 2016),
among others.

As these steps can be performed independently
or partially synchronized, the GPU is well-suited to
handle the large number of concurrent threads required
to process high-dimensional populations.

2.3.2. Four key kernel functions
SIAs naturally align with parallel architectures

due to their population-based structure (Yeh, 2017; Yeh
& Wei, 2012). In a GPU context, typical SIA workflows
can be divided into four key kernel functions:
(i)	 Initialize (I): Kernel Function (I) initializes the

population with random numbers and stores them
in global memory. Benefiting from the intuitive
implementation and data access in global
memory, most SIAs generated the population on
the CPU (NVIDIA Corporation, 2012). It might
have got a vast improvement for computing
efficiency if (I) the population on GPU instead
of CPU, although the way to arrange the global
memory may not be that intuitive (Mussi et al.,
2011; Ruder, 2016).

(ii)	 Evaluate fitness (E): Krömer et al. (2011) have
demonstrated that the most expensive step in
SIAs was to evaluate candidate solutions. The
most straightforward to deploy kernel function
(E) is the master–slave paradigm, where the
centralized controller dispatches particles in a
single population for parallelism. This approach
introduced no differences from an algorithmic
perspective but reduced the time-consuming
from a computational perspective.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

28

As shown in Table 1, Li & Zhang (2011) proposed
a CUDA-based multichannel particle swarm algorithm.
Wong (2009) implemented a parallel multi-objective
GA. Tsutsui and Fujimoto (2009) ran a sequential SIA,
dispatching a parallel GA for the particles.

According to NVIDIA (n.d.) and Mussi et al.
(2011), using shared memory in GPU code can
guarantee speedup for data transferring. However,
most did not perform (E) using shared memory.
(i)	 Communication (C): Unlike the directly

distributing function (E), the function (C) proposes
a more complicated model. It is distinguished by
being loosely connected to the population and
irregularly exchanging particles. Communicate
mechanisms were enabled between swarms
according to the law of data access, which means
that communication between distributed groups
of particles is acceptable.

(ii)	 Update Swarm (U): Adjust the positions or
velocities (if applicable) of each particle based
on shared information. Function (C) and function
(U) do not have a single pattern to fit all SIAs.
We must only attend to the warp divergence and
bank conflict in these two functions.
Across these works, the (E) kernel typically offers

the largest room for speedup, since fitness calculation
often dominates the total run time. Many authors have
thus focused on accelerating (E) by distributing the
population’s fitness evaluations to GPU threads.

2.3.3. Implementation challenges
Despite the potential computational gains,

several implementation challenges arise when porting
SIAs to GPUs:

(i)	 Memory-access patterns and coalescing:
Efficient GPU kernels rely heavily on coalesced
global-memory transactions, whereby
consecutive threads access consecutive memory
addresses. Achieving such patterns can involve
reorganizing particle data structures, interleaving
population elements, or carefully aligning data to
minimize misaligned accesses. Failure to do so
can negate much of the theoretical speedup from
parallelization.

(ii)	 Shared memory constraints: While shared
memory is a low-latency on-chip resource that
can accelerate repeated data accesses, the amount
available per block (commonly 48 KB or less)
may be insufficient for storing large populations
or high-dimensional problems. Consequently,
many GPU-based SIAs place most of their data
in global memory and resort to shared memory
only for small suboperations, such as partial
sums or local best-value comparisons.

(iii)	 Warp divergence and synchronization: GPU
threads operate in warps of 32 concurrent threads.
If branches in the kernel cause differing execution
paths within the same warp, performance can
degrade significantly due to warp divergence.
SIA kernels that incorporate random sampling,
conditionals for updating best solutions, or
communication topologies must minimize thread
divergence and carefully place synchronization
barriers (syncthreads or kernel launches) to avoid
race conditions when reading/writing global or
shared data structures (e.g., gBest positions).

(iv)	 Communication topologies: In many SIAs,
information sharing is crucial for guiding the
swarm. This communication can be ring-based,

Table 1. Summary of studies of taxonomy analysis for swarm intelligence algorithms
References Swarm intelligence

algorithm
Methodology Speedup

Tsutsui & Fujimoto
(2009)

Stand particle swarm
optimization (PSO)

(I), (C), (U) on CPU. (E) on a GPU without shared
memory

×6–8

W. Zhu (2011) Euclidean PSO (I), (C), (U) on CPU. (E) on a GPU without shared
memory

×1–5

Krömer et al. (2011) Multichannel PSO (U) on CPU, (I), (E), (C) on a GPU without shared
memory

×30

Wong (2009) Multi‑objective genetic
algorithm (GA)

(I) on CPU, (E), (C), (U) on a GPU without shared
memory

10–2

H. Zhu et al. (2011) Coarse‑grain
parallelization of GA

(I), (C), (U) on CPU, (E) on a GPU only without shared
memory

×60

Li & Zhang (2011) Asynchronous and
synchronous PSO

(I), (E), (C), (U) on a GPU with shared memory ‑

Mussi et al. (2011) GA (I), (E), (C), (U) on a GPU with shared memory ×2–12
Ruder (2016) GA and differential

evolution (DE)
(I), (E), (C), (U) on a GPU with shared memory and
synchronization

×3–28 for GA,
×19–34 for DE

Abbreviations: C: Communication; E: Evaluate fitness; I: Initialize; U: Update swarm

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

29

star-based, hierarchical, or fully connected.
Implementing these topologies on a GPU requires
balancing frequent data exchanges with the cost of
global or shared-memory transactions, especially
as the population grows. Some researchers
tackle this by employing loosely coupled
subswarms, reducing the number of cross-group
communications and associated overhead.

(v)	 Scalability and precision: GPU-based SIAs often
demonstrate significant speedups over CPU
counterparts when the population size is large
enough to saturate GPU resources. However, if
the swarm or dimensionality is too small, kernel-
launch overhead and data-transfer latencies may
outweigh parallelization benefits. Furthermore,
some applications demand higher-precision
arithmetic (e.g., double precision) that can
reduce throughput on specific GPU architectures.
Algorithm designers must thus tune swarm sizes,
memory layouts, and data precision settings for
optimal results.
These considerations indicate that GPU-based

SIAs benefit most when carefully tailored to exploit
hardware concurrency while mitigating memory and
synchronization bottlenecks. Ongoing advances in
GPU architectures—expanded on-chip memory, more
sophisticated warp schedulers, and built-in library
support—continue to ease the adaptation of SIAs for
large-scale, real-world optimization problems.

Building on these insights, the present work aims
to extend SSO into the GPU domain, integrating the
conceptual simplicity of SSO’s update mechanism
with the massive parallelism of CUDA. Our proposed
CUDA-SSO applies kernel-based parallelization
to SSO’s most time-consuming and data-parallel
steps, achieving significant speed gains and avoiding
concurrency conflicts when updating personal and
gBest states. In the following section, we elaborate on
the algorithmic framework of CUDA-SSO, including
memory organization, random number generation, and
a theoretical complexity analysis.

3. Compute Unified Device Architecture-SSO
Compute Unified Device Architecture-SSO

adapts the conventional SSO to leverage CUDA’s
parallelism. As illustrated in Fig. 1, each kernel
function runs concurrently across threads, reducing
both evaluation time and memory transaction overhead.

3.1. Random Number Generation
Random number generation (RNG) is essential

in SIAs because almost every aspect of the search—
particle initialization, stochastic exploration, and
crossover/mutation (in other SIAs)—depends on

drawing pseudo-random values. In CUDA-SSO,
these numbers govern how each variable in a particle
decides whether to retain its current value, adopt its
pBest, or adopt the gBest. As a result, generating
robust random values at high speed is critical to ensure
both algorithmic performance and solution diversity.

A naive approach to RNG would compute
random numbers on the CPU and then transfer them to
the GPU each iteration. However, such data movement
across the PCIe bus can introduce significant latency.
Instead, CUDA-SSO uses NVIDIA’s cuRAND
(random number generation library (NVIDIA, n.d.)
to generate random numbers directly on the GPU,
thereby reducing CPU–GPU switching overhead.
The following points highlight key considerations for
efficient RNG in CUDA-SSO.
(i)	 cuRAND generators: NVIDIA’s cuRAND library

provides multiple generator types (e.g., Philox,
Mersenne Twister, and XORWOW) suited to
various performance and quality requirements.
Philox typically offers a good balance for most
GPU-based Monte Carlo or optimization tasks
due to its combination of speed and sufficiently
robust randomness.

(ii)	 State management: A dedicated initialization
kernel uses cuRAND application programming
interfaces to set up independent RNG states for
each thread on the GPU. Each state is assigned a
seed, sequence number, and offset. This allows
threads to maintain independent RNG states,
avoiding global memory contention during the
main kernel execution.

(iii)	 Scalability: Due to CUDA-SSO allocating one or
more threads per particle/variable, the number of
random values can become quite large, reaching
Nsol × Nvar × Ngen. However, cuRAND’s
batched generation methods allow bulk requests
of random values, leveraging GPU concurrency
to rapidly produce millions of samples.

(iv)	 Memory footprint and access: RNG states
are typically stored in global memory for all
threads to access during kernel execution,
with each thread updating its local state after
retrieving random samples via curand (& state).
To minimize overhead, threads often load their
RNG state into registers, generate all required
samples, and write the state back to global
memory only once per iteration, reducing global
memory transactions.

(v)	 Kernel integration: Each thread within the main
CUDA-SSO search kernel can invoke cuRAND
library calls to draw random floats (e.g., uniform
or normal distributions) and apply them to the
SSO step function. While careful synchronization
may be necessary if multiple threads share RNG
states, this is typically avoided by assigning

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

30

unique states to each thread.
(vi)	 Quality versus speed: While XORWOW

offers faster performance, it may exhibit lower
randomness quality for specific statistical tests.
Although Philox or Mersenne Twister variants
may run slightly slower, they often deliver
more reliable distributions. While most swarm
optimizations work well with any reasonably
distributed, uncorrelated RNG, mission-critical
or precision-sensitive applications may require
more robust generators.
By generating all random numbers on the GPU,

CUDA-SSO avoids frequent PCIe transfers and ensures

that random samples are available on demand with
minimal latency. This strategy significantly improves
the algorithm’s scalability, allowing Nsol × Nvar × Ngen
random draws to be produced efficiently as the swarm
evolves. Consequently, RNG bottlenecks, which often
plague GPU-accelerated optimization, are effectively
mitigated, paving the way for faster and more diverse
exploration in the high-dimensional search space.

3.2. Thread Organization
Efficient thread organization is a cornerstone of

high-performance GPU applications, and CUDA-SSO

Fig. 1. Proposed compute unified device architecture-simplified swarm optimization
Abbreviations: C: Communication; CPU: Central processing unit; E: Evaluate fitness; gBest: Global best;

GPU: Graphics processing unit; I: Initialize; pBests: Personal bests; PSSO: Particle-based simplified swarm
optimization; U: Update swarm

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

31

takes advantage of CUDA’s execution hierarchy to
maximize throughput and minimize uncoalesced
memory accesses. This section details how thread
blocks, warps, and memory layouts are arranged to
accommodate large particle populations and high-
dimensional search problems.

3.2.1. Warp-level particle management
In CUDA-SSO, each warp—consisting of 32

threads—typically maps to one particle, such that the
warp’s threads can collaboratively handle that particle’s
variables (position vector, random updates, and fitness
computation). This design has several advantages.
(i)	 Straightforward synchronization: Since a

warp executes in a lockstep single-instruction
multiple-threads fashion, synchronization within
the warp is simpler. For many operations, native
warp intrinsics (e.g., __syncwarp()) allow
partial sums or shared computations to be done
without incurring the overhead of a block-wide
synchronization (__syncthreads()).

(ii)	 Fine-grained parallelism: If a particle has Nvar
variables, they can be distributed across multiple
threads, allowing partial work (e.g., updating
each variable or computing partial fitness) to
proceed in parallel within the same warp.

(iii)	 Reduced warp divergence: Since all threads
in a warp handle logically contiguous parts
of the same particle, branching is minimized.
Divergence primarily arises if the particle’s data
triggers conditionals (e.g., random updates to
different variables). However, these are usually
minor compared to divergences caused by
dissimilar data accesses across multiple particles.
Compute unified device architecture’s thread

blocks group warps together, and a grid of blocks
covers the entire population.

Block sizes are chosen in multiples of 32
(e.g., 128, 256, and 512 threads/block) to ensure warp
alignment. In CUDA-SSO, a block typically manages
several particles—each warp in the block handles a
separate particle’s data.

Grid sizes are determined by how many blocks
are needed to encompass all particles. For instance, if
the swarm has Nsol =  10,000 particles and each block
manages eight warps, we need at least 10,000/8 = 1,250
blocks to cover the swarm. This approach scales
well on modern GPUs with multiple SMs capable of
running dozens of blocks concurrently.

To fully utilize GPU bandwidth, CUDA-SSO
arranges each particle’s data (e.g., position vector, best
values) contiguously in global memory. When warp
threads access consecutive addresses, coalesced reads
reduce the required memory transactions. Key design
elements include:

(i)	 Particle-centric layout: The position vector,
pBest, and related metadata for each particle are
stored back-to-back in memory. Threads within a
warp access sequential indices, aligning memory
requests with hardware transaction boundaries.

(ii)	 Avoiding strided access: If data for a single
particle were scattered or interleaved with multiple
particles, warp threads would fetch non-consecutive
addresses, leading to uncoalesced accesses and
lowered throughput. By contiguously grouping
a particle’s variables, CUDA-SSO preserves
coalescing even when the swarm is large.

(iii)	 Shared memory trade-off: Although shared
memory can accelerate repeated data accesses
(e.g., partial sums), large swarm sizes (hundreds
or thousands of particles, each with tens to
hundreds of variables) rapidly exceed the
typical 48–96 kb shared memory per block.
Consequently, global memory becomes the main
data store. Nevertheless, kernel designers may
still use shared memory for sub-operations (e.g.,
block-level reductions) if it is feasible within the
memory budget.

3.2.2. Synchronization and concurrency
Swarm intelligence demands occasional

synchronization to ensure that updated particle states
or gBest values are consistently available. In CUDA-
SSO, two main synchronization patterns arise:
(i)	 Warp-level: For tasks that only require threads

within the same warp to coordinate—such as
partial computation of a single particle’s fitness—
warp intrinsics (__syncwarp()) suffice. This is
faster than a full __syncthreads(), affecting all
block threads.

(ii)	 Block- or grid-level: Specific global or pBest
updates may require broader synchronization:
•	 __Syncthreads() ensures all threads in the

block finalize local data before proceeding.
•	 Multiple kernel launches act as implicit grid-

wide barriers, guaranteeing that all blocks
complete one stage (e.g., updating pBests)
before starting the next (e.g., computing the
gBest).

Ensuring all local updates are complete
before any best-value comparisons helps avoid race
conditions, which might otherwise lead to inconsistent
reads or partial updates of shared variables.

For huge swarms or high-dimensional search
spaces, a single kernel launch might strain available
GPU memory or underutilize certain multiprocessors.
CUDA-SSO addresses these scenarios by subdividing
the population:
(i)	 Population splitting: Instead of handling all

NsolN_{\mathrm{sol}} particles in one kernel, the

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

32

swarm can be partitioned into subsets processed
by multiple sequential kernel launches or multiple
streams. Each subset undergoes search and fitness
evaluation before merging partial bests.

(ii)	 Multi-kernel scheduling: Modern GPUs support
concurrent kernels, enabling partial overlaps in
execution. If each subset’s memory footprint is
smaller, more streams can run concurrently on
different SMs, improving load balancing and
overall throughput.

(iii)	 Trade-off: Although subdividing can improve
concurrency, it introduces additional steps for
merging partial gBest values across subsets.
Careful scheduling is needed so that merging
overhead does not offset gains from improved
load distribution.
By adhering to warp-based particle updates,

coalesced memory access patterns, and appropriate
synchronization, CUDA-SSO efficiently distributes
workload across a GPU’s many SMs. In turn, this
enables (i) high utilization, where a large swarm or high-
dimensional setting can saturate GPU computational
resources, (ii) scalability, where as problem sizes grow,
additional blocks and warps smoothly extend parallel
coverage, and (iii) maintainability, where warp-level
design keeps each particle’s logic self-contained,
simplifying debugging and code maintenance.

Developers must still tune parameters such as block
size, register usage, and shared-memory allocations for
specific GPU architectures (e.g., differences between
NVIDIA Turing, Ampere, or Hopper architectures).
Nonetheless, the fundamental strategy—one warp per
particle, coalesced global memory, and synchronization
barriers for best-value consistency—forms a robust
template for realizing scalable, high-performance SI
on GPUs (Gordon & Whitley, 1993; Hadley, 1964;
Wolpert & Macready, 1995).

3.3. Compute Unified Device Architecture-SSO
Implementation

Leveraging GPU-based parallelism requires a
careful design of kernel functions, memory layouts,
and synchronization strategies. In CUDA-SSO, each
iteration (or generation) processes a large population
of particles on the GPU, avoiding frequent transfers
across the PCIe bus. By dividing search, fitness
evaluation, and best-value updates into separate
kernels, the algorithm can efficiently harness the
GPU’s concurrent execution model.

3.3.1. Kernel-launch structure
Algorithm 2 illustrates the main flow of CUDA-

SSO. Each generation begins with random number

generation on the GPU, followed by parallel kernels
for the search process (step function) and fitness
evaluations. Afterward, pBests and the gBest are
updated in parallel, with each block or warp managing
a subset of particles.

Algorithm 2. Flowchart for CUDA-simplified
swarm optimization
sol = Nsol × Nvar
pBests = Nsol × Nvar
gBest = 0
set block size
syncThreads()

Initialize population
Initialize block size
Transfer data from CPU to GPU

//Kernel functions executed in parallel
for gen = 0 to Ngen do
 Search process for all particles �//stepFunc in

parallel
 syncThreads()
 Update pBest for each solution //Kernel (U)
 Update gBest for each solution //Kernel (U)
 syncThreads()
end for

Send data back to the CPU

The above design leverages the GPU’s parallel
capabilities to handle large numbers of particles in
each generation and ensures that intermediate results
are kept consistent across all threads before the next
update commences. Here is how it works:
(i)	 Parallel kernel launches: The design separates

operations into distinct parallel kernels for the
search process (step function) and for updating
pBests and gBest values. This approach enables
the concurrent execution of computation (E)
and communication (C) operations before
synchronizing for updates (U).

(ii)	 Synchronization: The system uses syncThreads()
or similar synchronization barriers to ensure
all threads complete their current operations,
whether searching or updating optimal values,
before moving forward. This synchronization
is vital for preventing race conditions and
maintaining consistent pBests and the gBest.

(iii)	 GPU–CPU transfers: To minimize PCIe bus
overhead, data transfers between CPU and GPU
occur only twice: once at initialization and once
at completion. During iterations, all population
data remains in GPU memory, following the
memory management guidelines outlined in
Section 3.2.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

33

3.3.2. Parallel updates of pBests and gBests
Algorithms 3 and 4 illustrate how pBests and

the gBest are updated in a parallel environment. By
distributing the workload across GPU threads, CUDA-
SSO prevents any single update from dominating run
time and fully exploits GPU concurrency.

Algorithm 3. Parallel updates of personal bests.
syncThreads()
for each particle i in parallel do
 Load current sol[i] and pBests[i]
 if f(sol[i]) < f(pBests[i]) then
 pBests[i] = sol[i]
 end if
end for
syncThreads()

Algorithm 4. Parallel updates of the global best.
syncThreads()
for each particle i in parallel do
 Load current pBests[i] and gBest
 if f(pBests[i]) < f(gBest) then
 gBest = pBests[i]
 end if
end for
syncThreads()

Implementation details of Algorithms 3 and 4 are
discussed in the following:
(i)	 Warp/block-level work: Each particle is

processed in parallel. While it is not explicitly

stated that one warp must correspond to a single
particle, this configuration can be achieved by
selecting suitable block and grid sizes, thereby
reducing warp divergence and simplifying
synchronization.

(ii)	 Coalesced memory access: In these snippets, each
thread (or warp) reads data stored contiguously
in global memory for the assigned particle i. If
both sol i and pBest i reside in adjacent memory
locations, warp-level access requests naturally
coalesce into fewer transactions.

(iii)	 Synchronization points: The syncThreads() calls
at the start and end of each code block ensure
that all local read/write operations to pBests or
gBest finish before another kernel or step begins.
That is, the communication for global search
does not rely on synchronization mechanisms, as
these typically incur substantial overhead. Such
barriers prevent partial updates or inconsistent
reads across parallel threads.

3.4. Time Complexity Analysis
Compared to CPU-SSO’s sequential structure,

CUDA-SSO distributes the update and evaluation
workload over many GPU threads, effectively
reducing the time complexity within each iteration.
Fig. 2 contrasts CPU-SSO’s single-thread approach
versus CUDA-SSO’s multi-thread parallelism. While
CPU-SSO tends to scale with O(n3) under large

Fig. 2. The time complexity analysis
Abbreviations: C: Communication; CPU: Central processing unit; CUDA: Compute unified device architecture;
gBest: Global best; GPU: Graphics processing unit; pBests: Personal bests; SSO: Simplified swarm optimization

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

34

Ta
bl

e
2.

 B
en

ch
m

ar
k

fu
nc

tio
ns

 fo
r c

om
pu

te
 u

ni
fie

d
de

vi
ce

 a
rc

hi
te

ct
ur

e‑
si

m
pl

ifi
ed

 sw
ar

m
 o

pt
im

iz
at

io
n

ID
Fu

nc
tio

n
D

efi
ni

tio
n

Fe
as

ib
le

 b
ou

nd
s

f 1
Sp

he
re

f
x i

iP
1

2

1
=

=
∑

[−
5.

12
,5

.1
2]

P

f 2
H

yp
er

‑e
pl

lip
so

id
f

i
x

iP
i

2
1

2
=

⋅
=

∑
[−

5.
12

,5
.1

2]
P

f 3
Sc

hw
ef

el
’s

f
x j

ji

iP
3

2

1
1

=
 

 
=

=
∑

∑
[−

65
.5

36
,6

5.
53

6]
P

f 4
R

os
en

br
oc

k
f

x
x

x
i

i
i

iP
4

1
2
2

2

11
1
0
0

1
=

⋅
−

(
)+

−
(

)
 

 
+

=−
∑

[−
2.

04
8,

2.
04

8]
P

f 5
R

as
tri

gi
n

f
P

x
x

i
i

iP
5

2

11
1
0

1
0
2

=
⋅

+
−

(
)

 
 

=−
∑

π
[−

5.
12

,5
.1

2]
P

f 6
A

ck
le

y
f

a
b

P
x

P
cx

i
iP

i
iP

6
1

1

1
1

=
−

⋅
−
⋅

  
  −

(
)

 
 

=
=

∑
∑

ex
p

ex
p

co
s

[−
32

.7
68

,3
2.

76
8]

P

f 7
G

rie
w

an
k

f
x

x i
i

iP

iP
i

7
2

1
1

1

4
0
0
0

1
=

−
 

 +
=

=
∑

∏
co
s

[−
60

0,
60

0]
P

f 8
Po

w
el

l
f

x
x

x
x

x
x

i
i

i
i

i
i

8
4
3

4
2
2

4
1

4
2

4
2

4
1
4

1
0

5
2

=
+

(
)

 
 +

−
(

)
+

−
(

)
 

−
−

−
−

−
 +

−
(

)
 

 
−

=
∑

1
0

4
3

4
4

14
x

x
i

i
iP
/

[−
4,

5]
P

f 9
Sc

hw
ef

el
f

P
x

x
i

i
iP

9
1

4
1
8
9
8
2
9

=
⋅

−
⋅

(
)

=
∑

.
si
n

[−
5.

12
,5

.1
2]

P

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

35

4. Experiments and Analysis

4.1. Benchmark Functions and Design of
Experiments

We tested nine standard benchmark functions,
shown in Table 2. These functions include both
separable and inseparable properties, with multimodal
and unimodal complexities. Each function has a
dimension of Nvar = 50. By controlling parameters such
as Ngen (the maximum iteration count), Nsol (population
size), and Nvar (number of variables), we gauge both
the convergence (precision) and run time (speedup) of
CPU-SSO versus CUDA-SSO.

From Table 3, we know we need to do a
seven-factor experimental design, 128 experiments.
It is impossible to do such a job with contracted
computational resources. Thus, the parameters:
block size, Nsol, Nvar, and Ngen were arranged as
follows: 1,024, 100, 50, and 1000, referring to other
papers (Li & Zhang, 2011; NVIDIA Corporation,
2012).

The remaining parameters to be tested are the
CUDA-SSO search parameters: Cw, Cp, and Cg. Six
parameter levels were evaluated in the experiments,
as shown in Table 4. The experimental design of the
parameter combinations presented in Table 4 was
analyzed using scipy.stats library (Pllana & Xhafa,

Table 3. Experimental parameters of compute
unified device architecture‑simplified swarm

optimization
No. Graphics

processing unit
model

Compute unified device
architecture‑simplified
swarm optimization

1 Block size Cw, Cp, Cg

2 ‑ Population size: Nsol

3 ‑ Number of variables: Nvar

4 ‑ Number of generations: Ngen

Table 4. Factor for the parameters of compute
unified device architecture‑simplified swarm

optimization search
No. Cw, Cp, and Cg
1 0.1, 0.3, 0.7
2 0.1, 0.4, 0.8
3 0.2, 0.4, 0.6
4 0.2, 0.5, 0.9
5 0.3, 0.4, 0.5
6 0.3, 0.6, 0.8

Table 6. Precision comparison for central processing unit‑simplified swarm optimization and compute unified
device architecture‑simplified swarm optimization

Function Central processing unit‑simplified swarm
optimization

Compute unified device architecture‑simplified
swarm optimization

Average Standard Minimum Average Standard Minimum
f1 54.9497 7.4781 39.0219 41.0156 5.3095 28.5125
f2 1,152.7869 110.1388 986.4035 820.1844 91.6444 635.6414
f3 192,950.2539 18,823.6598 162,102.9062 127,504.9484 17,093.0233 103,114.1562
f4 1,573.8801 179.6216 1,190.2180 1,103.9103 134.5448 730.0332
f5 269.3232 14.4775 248.3413 220.6183 16.2710 189.2935
f6 16.7117 0.2739 16.0508 15.2896 0.3655 14.7103
f7 199.0340 20.2784 156.4854 145.3612 19.4239 95.3518
f8 1,989.3588 396.4583 1,438.9280 1,181.2840 270.4324 727.8101
f9 20,719.6228 4.5922 20,706.0234 20,708.0471 3.6021 20,702.3574

Table 5. The parameter combinations analyzed using the Kruskal–Wallis H‑test
Parameters Values
Cw 0.1 0.1 0.2 0.2 0.3 0.3
Cp 0.3 0.4 0.4 0.5 0.4 0.6
Cg 0.7 0.8 0.6 0.9 0.5 0.8
Method

Ranking 3,843.173 1,968.923 4,840.817 2,037.200 6,270.421 1,919.306
Statistic 19,1.0773 p‑value 2.2989086e‑39

population sizes, CUDA-SSO exhibits near O(n)
scaling in the dominating computational kernel.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

36

4.2. Precision and Speedup
This subsection shows the trial for CPU-SSO

and CUDA-SSO in 20 independent runs by testing
the benchmark functions (Table 2). The average result
and corresponding standard deviation are illustrated
in Table 6. We utilized the Friedman test (Friedman,
1994) to verify differences. As described in Table 7,
most cases have statistical differences for the precision
of the solutions in CUDA-SSO.

In addition, the algorithmic flow and data
structure of CUDA-SSO (Section 3.3) significantly
improved the value of gBest. Table A1 shows the output
data of the precision of the solutions for CUDA-SSO.

In general, as far as the average and the minimum
of the performances were concerned, CUDA-SSO’s
performances on multimodal function and unimodal
function f1 to f9 worked better than CPU-SSO.

Besides the precision of the solutions, efficiency
is a critical factor that must be considered. Speedup and
efficiency are among the most common measurement
methods to compare the test results. They were
illustrated in Eq. (2) and Eq. (3). Nevertheless, either
speedup or efficiency cannot reflect the exploitation
of computational power. Thus, our research adopted
performance criteria: rectified efficiency (Eq. [4]).

Speedup
Time
Time

CPU

GPU
= � (2)

Ratio
Power
Power

GPU

CPU
= � (3)

RE Speedup
Ratio

= � (4)

The output data of the speedup test for CUDA-
SSO is listed in Table A2. Speedup experiments are
depicted in Table 8. A series of experiments was
carried out to check the speedup of CPU-SSO and
CUDA-SSO. Among these experiments, the Nsol was
set to 100, 200, 300, and 350, respectively. The result
showed that CUDA-SSO accelerates up to ×164.2206
compared with CPU-SSO when Nsol = 100. The
speedup’s performance was becoming more prominent
as the size of Nsol increased. The maximum speedup
was ×1,604.3382 in the case of Nsol = 350.

2017) by the Kruskal–Wallis H-test. According to
the Kruskal–Wallis H-test results in Table 5, the
p=2.2989086e-39 is <0.05 in the 95% confidence
level, indicating significant differences among the six
parameter combinations. Based on the ranking values,
the sixth parameter combination demonstrated the best
performance. Therefore, the best performance was
achieved when the parameters (Cw, Cp, and Cg) were
set to (0.3, 0.6, and 0.8), which were adopted as the
final parameter settings.

To set the same difficulty in all problems,
first, we must choose a dimension particle size (P)
search space for all benchmark functions. Second,
we use the P obtained from the first step to test the
performance of CUDA-SSO. In this subsection,
the experiments are executed by the benchmark
function f1.

We implemented CPU-SSO according to
Section 2.1 and proposed CUDA-SSO, as described
in Section 3. In mimics, we ran f1–f9 20 times
independently, with 1000 iterations for each run.
For CPU-SSO, we performed the same number
of function evaluations as CUDA-SSO. The two
algorithms have been tested on the same criterion
for a fair comparison. The experimental parameters
were set as follows: P=50, Cw=0.3, Cp=0.6,
Cg=0.8. In our experimental environment, the
comparison speedup was tested by Nsol = 100, 200,
300, and 350.

Table 7. Friedman test for the precision
of the solutions in compute unified device
architecture‑simplified swarm optimization

Function Statistic p‑value
f1 19.9200 0.0002
f2 24.6000 0.0000
f3 24.6000 0.0000
f4 21.9600 0.0001
f5 24.6000 0.0000
f6 24.9600 0.0000
f7 21.7200 0.0001
f8 23.1600 0.0000
f9 19.5600 0.0002

Table 8. Running time and speedup for the benchmark function Rosenbrock
Nsol Central processing unit‑simplified swarm

optimization
Compute unified device

architecture‑simplified swarm optimization
Rectified efficiency

100 48.8263 0.13875 164.2206
200 193.10285 0.154 585.1602
300 434.8518 0.1638 1,238.8940
350 582.71855 0.1695 1,604.3382

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

37

5. Conclusion
This paper introduced a GPU-based CUDA-

SSO, leveraging the well-known SSO’s simplicity and
integrating it into the CUDA framework. By adopting
a parallel processing strategy and minimizing data
transfers between CPU and GPU, CUDA-SSO excels
in computational speed and solution precision. Our
experiments demonstrated:
(i)	 Time complexity reduction: CUDA-SSO

mitigated CPU-SSO’s O(n3) scalability issues
by distributing the workload across thousands of
GPU threads.

(ii)	 Significant speedups: For benchmark functions,
CUDA-SSO outperformed CPU-SSO with
speedups up to ×1,604.34\times 1,604.34 at
larger population sizes.

(iii)	 Improved solution accuracy: Statistical analysis
(Friedman and Kruskal–Wallis tests) showed
that CUDA-SSO yielded notably higher-quality
solutions than CPU-SSO across multiple
benchmark functions.
To improve the overall efficiency of the

proposed approach, future research may explore
alternative memory allocation strategies, as memory
management plays a crucial role in the performance of
parallel and distributed systems—particularly where
access speed and bandwidth are critical. Adaptive
memory techniques can help reduce latency, lower
contention, and optimize resource usage. In addition,
parameter tuning and choosing algorithmic parameters
that significantly impact model effectiveness and
computational cost should be emphasized. Future
studies can achieve more scalable, efficient, and
reliable performance by integrating efficient memory
management with robust parameter tuning. Although
rectified efficiency is introduced, future research could
provide rigorous justification or comparisons with
traditional parallel efficiency metrics.

Acknowledgments
None.

Funding
This research was supported in part by the Natural

Science Foundation of China (Grant No. 62106048)
and the Ministry of Science and Technology (MOST),
China, under grants MOST 107-2221-E-007-
072-MY3, MOST 110-2221-E-007-107-MY3, and
NSTC 113-2221-E-007-117-MY3.

Conflict of Interest
The authors declare that there are no conflicts of

interest.

Author Contributions
Conceptualization: Wenbo Zhu, Shang-Ke

Huang, Wei-Chang Yeh
Formal analysis: All authors
Methodology: Wenbo Zhu, Shang-Ke Huang,

Wei-Chang Yeh
Writing–original draft: All authors
Writing–review & editing: Wenbo Zhu,

Shang-Ke Huang, Wei-Chang Yeh, Zhenyao Liu

Availability of Data
Descriptions of the research data are provided in

Section 4.1.

Further Disclosure
A preliminary version of this work was

briefly posted on arXiv for reference (https://doi.
org/10.48550/arXiv.2110.01470).

References
Abbasi, M., Rafiee, M., Khosravi, M.R., Jolfaei, A.,

Menon, V.G., & Koushyar, J. M. (2020). An
efficient parallel genetic algorithm solution for
vehicle routing problem in cloud implementation
of the intelligent transportation systems. Journal
of Cloud Computing, 9(6), 6.

	 https://doi.org/10.1186/s13677-020-0157-4
AlZubi, S., Shehab, M., Al-Ayyoub, M., Jararweh, Y.,

& Gupta, B. (2020). Parallel implementation for
3D medical volume fuzzy segmentation. Pattern
Recognition Letters, 130, 312–318.

	 https://doi.org/10.1016/j.patrec.2018.07.026
Chung, Y.Y., & Wahid, N. (2012). A hybrid network

intrusion detection system using simplified
swarm optimization (SSO). Applied Soft
Computing, 12(9), 3014–3022.

	 https://doi.org/10.1016/j.asoc.2012.04.020
Corley, H.W., Rosenberger, J., Yeh, W.C., &

Sung, T.K. (2006). The cosine simplex algorithm.
The International Journal of Advanced
Manufacturing Technology, 27, 1047–1050.

	 https://doi.org/10.1007/s00170-004-2278-1
Corral, J.M.R., Civit-Masot, J., Luna-Perejón, F., Díaz-

Cano, I., Morgado-Estévez, A., & Domínguez-
Morales, M. (2024). Energy efficiency in
edge TPU vs. Embedded GPU for computer-
aided medical imaging segmentation and
classification. Engineering Applications of
Artificial Intelligence, 127, 107298.

	 https://doi.org/10.1016/j.engappai.2023.107298
Friedman, J.H. (1994). An overview of predictive

learning and function approximation. In: From
Statistics to Neural Networks. Vol. 136. Springer,

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

38

Berlin, Heidelberg.
	 https://doi.org/10.1007/978-3-642-79119-2_1
Gordon, V.S., & Whitley, D. (1993). Serial and parallel

genetic algorithms as function optimizers. In:
Proceedings of the 5th International Conference
on Genetic Algorithms (ICGA). Urbana-
Champaign, IL, USA.

Hachaj, T., & Piekarczyk, M. (2023). High-level
hessian-based image processing with the frangi
neuron. Electronics, 12(19), 4159.

	 https://doi.org/10.3390/electronics12194159
Hadley, G. (1964). A Nonlinear and Dynamics

Programming. Addison-Wesley Professional,
Reading, MA, USA.

Hager, G., Zeiser, T., & Wellein, G. (2008). Data
Access Optimizations for Highly Threaded
Multi-Core Cpus with Multiple Memory
Controllers. In: Proceedings of 2008 IEEE
International Symposium on Parallel and
Distributed Processing, p1–7.

	 https://doi.org/10.1109/IPDPS.2008.4536341
Hussain, M.M., Hattori, H., & Fujimoto, N. (2016).

A CUDA implementation of the standard
particle swarm optimization. In: Proceedings of
2016 18th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing
(SYNASC) IEEE, Timisoara, Romania. p24–27.

	 https://doi.org/10.1109/SYNASC.2016.043
Krömer, P., Platoš, J., Snášel, V., & Abraham, A. (2011).

A comparison of many-threaded differential
evolution and genetic algorithms on CUDA. In:
Proceedings of 2011 Third World Congress on
Nature and Biologically Inspired Computing:
IEEE, Salamanca, Spain, p19–21.

	 https://doi.org/10.1109/NaBIC.2011.6089641
Lee, W.C., Chuang, M.C., & Yeh, W.C. (2012).

Uniform parallel-machine scheduling to
minimize makespan with position-based learning
curves. Computers and Industrial Engineering,
63(4), 813–818.

	 https://doi.org/10.1016/j.cie.2012.05.003
Li, W., & Zhang, Z. (2011). A Cuda-Based Multi-

Channel Particle Swarm Algorithm. In:
Proceedings of 2011 International Conference on
Control, Automation and Systems Engineering
(CASE): IEEE, Singapore.

	 https://doi.org/10.1109/ICCASE.2011.5997786
Luo, C., Sun, B., Yang, K., Lu, T., & Yeh, W.C. (2019).

Thermal infrared and visible sequences fusion
tracking based on a hybrid tracking framework
with adaptive weighting scheme. Infrared
Physics and Technology, 99, 265–276.

	 https://doi.org/10.1016/j.infrared.2019.04.017
Mittal, S., & Vetter, J.S. (2014). A survey of methods

for analyzing and improving GPU energy
efficiency. ACM Computing Surveys (CSUR),

47(2), 1–23.
	 https://doi.org/10.1145/263634
Mortezazadeh, M., Wang, L.L., Albettar, M., & Yang, S.

(2022). CityFED - city fast fluid dynamics for
Urban microclimate simulations on graphics
processing units. Urban Climate, 41, 101063.

	 https://doi.org/10.1016/j.uclim.2021.101063
Mussi, L., Daolio, F., & Cagnoni, S. (2011). Evaluation

of parallel particle swarm optimization
algorithms within the CUDA™ architecture.
Information Sciences, 181(20), 4642–4657.

	 https://doi.org/10.1016/j.ins.2010.08.045
Navarro, C.A., Hitschfeld-Kahler, N., & Mateu, L.

(2014). A survey on parallel computing and its
applications in data-parallel problems using GPU
architectures. Communications in Computational
Physics, 15(2), 285–329.

	 https://doi.org/10.4208/cicp.110113.010813a
NVIDIA Corporation. (2012). CUDA C Best Practices

Guide. Ver. 4.1. [Technical Report]. United
States: NVIDIA Corporation.

NVIDIA. (n.d.). CUDA C Programming Guide.
NVIDIA Documentation. Available from: https://
docs.nvidia.com/cuda/cuda-c-programming-
guide [Last accessed on 2024 Nov 01].

Pllana, S., & Xhafa, F. (2017). Programming Multicore
and Many-Core Computing Systems. John Wiley
and Sons, United States.

	 https://doi.org/10.1002/9781119332015
Ruder, S. (2016). An Overview of Gradient Descent

Optimization Algorithms. [arXiv Preprint].
Tan, Y., & Ding, K. (2015). A survey on GPU-

based implementation of swarm intelligence
algorithms. IEEE Transactions on Cybernetics,
46(9), 2028–2041.

	 https://doi.org/10.1109/TCYB.2015.2460261
Tsutsui, S., & Fujimoto, N. (2009). Solving quadratic

assignment problems by genetic algorithms with
GPU computation: A case study. In: Proceedings
of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation
Conference: Late Breaking Papers. Montreal,
Québec, Canada, 2009. p8–12.

	 https://doi.org/10.1145/1570256.157035
Wolpert, D.H., & Macready, W.G. (1995). No

Free Lunch Theorems for Search. Technical
Report SFI-TR-95-02-010. Santa Fe Institute,
United States.

Wong, M.L. (2009). Parallel multi-objective
evolutionary algorithms on graphics processing
units. In: Proceedings of the 11th Annual
Conference Companion on Genetic and
Evolutionary Computation Conference: Late
Breaking Papers. Montreal, QC, Canada.

	 https://doi.org/10.1145/1570256.1570354
Yeh, W.C. (2009). A two-stage discrete particle swarm

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

39

optimization for the problem of multiple multi-
level redundancy allocation in series systems.
Expert Systems with Applications, 36(5),
9192–9200.

	 https://doi.org/10.1016/j.eswa.2008.12.024
Yeh, W.C. (2012). Simplified swarm optimization in

disassembly sequencing problems with learning
effects. Computers and Operations Research,
39(9), 2168–2177.

	 https://doi.org/10.1016/j.cor.2011.10.027
Yeh, W.C. (2013). New parameter-free simplified

swarm optimization for artificial neural network
training and its application in the prediction
of time series. IEEE Transactions on Neural
Networks and Learning Systems, 24(4), 661–665.

	 https://doi.org/10.1109/TNNLS.2012.2232678
Yeh, W.C. (2014). Orthogonal simplified swarm

optimization for the series-parallel redundancy
allocation problem with a mix of components.
Knowledge Based Systems, 64, 1–12.

	 https://doi.org/10.1016/j.knosys.2014.03.011
Yeh, W.C. (2015). An improved simplified swarm

optimization. Knowledge Based Systems,
82, 60–69.

	 https://doi.org/10.1016/j.knosys.2015.02.022
Yeh, W.C. (2017). A new exact solution algorithm

for a novel generalized redundancy allocation
problem. Information Sciences, 408, 182–197.

	 https://doi.org/10.1016/j.ins.2017.04.019
Yeh, W.C., & Wei, S.C. (2012). Economic-based

resource allocation for reliable grid-computing
service based on Grid Bank. Future Generation
Computer Systems, 28(7), 989–1002.

	 https://doi.org/10.1016/j.future.2012.03.005
Yildirim, E., Arslan, E., Kim, J., & Kosar, T. (2015).

Application-level optimization of big data
transfers through pipelining, parallelism and
concurrency. IEEE Transactions on Cloud
Computing, 4(1), 63–75.

	 https://doi.org/10.1109/TCC.2015.2415804
Zhu, H., Guo, Y., Wu, J., Gu, J., & Eguchi, K. (2011).

Paralleling euclidean particle swarm optimization
in CUDA. In: Proceedings of 2011 4th International
Conference on Intelligent Networks and Intelligent
Systems: IEEE, Kuming, China.

	 https://doi.org/10.1109/ICINIS.2011.35
Zhu, W. (2011). Massively parallel differential

evolution-pattern search optimization with
graphics hardware acceleration: An investigation
on bound constrained optimization problems.
Journal of Global Optimization, 50(3), 417–437.

	 https://doi.org/10.1007/s10898-010-9590-0

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

40

AUTHOR BIOGRAPHIES

Wenbo Zhu is currently affiliated
with the School of Mechatronical
Engineering and Automation, Foshan
University, Foshan, Guangdong,
China. He has published original

research articles in journals such as Signal Processing,
Journal of Medical Imaging and Health Informatics,
and Computers in Biology and Medicine. His current
research interests include artificial intelligence
algorithms, particularly pattern recognition, machine
learning, and evolutionary computation.

Shang-Ke Huang is currently
affiliated with the Integration and
Collaboration Laboratory, Department
of Industrial Engineering and
Engineering Management, College
of Engineering, National Tsing Hua

University, Hsinchu, Taiwan.

Wei-Chang Yeh is a Chair Professor
of the Department of Industrial
Engineering and Engineering
Management at National Tsing Hua
University in Taiwan. He received his

M.S. and Ph.D. degrees in Industrial Engineering
from the University of Texas at Arlington. His
current and future research focus primarily on

algorithm development, including exact solution
methods and soft computing approaches applied
to various network reliability and optimization
problems (e.g., wireless sensor network, cloud
computing, IoT, big data, and energy systems).
He has published more than 300 research papers
in high-ranking journals and conferences and has
received numerous awards, including the two
Outstanding Research Awards, a Distinguished
Scholars Research Project Award, and two Overseas
Research Fellowships from the Ministry of Science
and Technology in Taiwan.

Zhenyao Liu is an Assistant Professor
in the School of Economics and
Management, Taizhou University,
Jiangsu Province, China. He received
his Ph.D. degree in Industrial

Engineering and Engineering Management from
National Tsing Hua University, Taiwan. His research
areas include soft computing and machine learning.

Chia-Ling Huang is a Professor in the
Department of International Logistics
and Transportation Management
at Kainan University, Taiwan. She
received her Ph.D. in Industrial

Engineering and Management from National Chiao
Tung University, Hsinchu, Taiwan. Her research
interests include reliability, network analysis, and
statistical applications.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

41

Appendix

Table A1. Output data of the precision of the solutions for compute unified device architecture‑simplified
swarm optimization

Type f1 f2 f3 f4 f5 f6 f7 f8 f9

CPU 57.82 1,069.30 185,060.89 1,344.71 259.23 16.95 196.72 1,786.07 20,718.92
CPU 39.02 1,207.01 179,721.33 1,579.31 260.32 16.84 234.03 1,438.93 20,712.57
CPU 60.39 1,010.91 231,277.19 1,305.95 251.80 16.52 181.27 2,504.35 20,706.02
CPU 49.92 1,024.91 217,473.16 1,595.23 253.40 16.88 175.41 2,661.07 20,722.49
CPU 53.80 993.56 234,086.36 1,466.08 291.53 16.65 200.09 1,911.11 20,721.33
CPU 56.81 1,213.34 195,778.31 1,601.14 284.36 16.58 202.84 1,842.27 20,721.46
CPU 53.31 1,058.56 194,398.47 1,479.26 263.41 16.76 203.98 2,825.84 20,725.72
CPU 47.54 1,361.57 190,197.06 1,705.98 249.95 17.20 184.71 1,768.86 20,719.32
CPU 69.00 986.40 162,102.91 1,647.99 269.47 16.62 213.29 1,462.96 20,721.66
CPU 61.88 1,281.48 173,873.59 1,536.36 286.90 16.72 189.20 1,773.87 20,719.98
CPU 62.03 1,256.16 184,865.73 1,619.13 279.64 16.62 201.49 2,083.50 20,713.47
CPU 60.32 1,204.71 192,596.94 1,699.70 265.15 16.40 218.22 2,384.77 20,722.15
CPU 49.26 1,147.99 200,337.53 1,679.18 284.74 17.02 197.28 1,662.26 20,717.72
CPU 63.23 1,041.88 212,481.92 1,731.55 257.07 16.46 235.21 1,544.44 20,721.78
CPU 61.97 1,206.52 164,635.55 1,641.58 278.79 16.41 158.47 1,481.78 20,717.70
CPU 60.68 1,233.61 177,676.94 1,190.22 285.63 16.05 200.81 2,092.47 20,719.91
CPU 51.53 1,261.56 200,216.28 1,470.10 280.31 17.14 156.49 1,922.02 20,719.85
CPU 44.84 1,242.82 194,000.47 1,972.64 248.34 16.89 205.72 2,448.71 20,727.23
CPU 50.65 1,210.58 182,236.14 1,385.07 251.20 16.96 215.06 2,038.71 20,719.54
CPU 44.97 1,042.85 185,988.31 1,826.44 285.23 16.57 210.41 2,153.19 20,723.66
GPU 43.39 855.83 118,060.55 1,063.94 189.29 15.43 156.66 1,188.65 20,704.46
GPU 45.56 725.88 141,413.03 1,092.53 231.59 14.71 159.39 1,249.47 20,707.90
GPU 45.01 967.91 131,710.67 730.03 205.58 15.26 95.35 727.81 20,714.68
GPU 36.17 845.70 134,990.25 1,338.93 205.13 15.05 143.00 1,039.97 20,709.13
GPU ,43.27 939.87 129,875.73 972.40 192.81 15.21 154.22 962.32 20,702.36
GPU 34.54 821.64 111,364.34 1,299.02 242.38 15.21 167.35 904.35 20,708.38
GPU 42.41 782.17 133,603.25 1,074.08 211.55 15.45 135.07 1,211.44 20,710.81
GPU 42.46 739.65 108,214.88 1,248.61 222.93 15.59 133.56 1,332.69 20,716.58
GPU 54.16 912.20 103,114.16 1,077.81 227.66 15.91 170.80 1,028.79 20,706.01
GPU 37.96 871.04 114,409.24 1,021.06 237.07 15.30 124.51 1,232.94 20,705.02
GPU 28.51 860.33 130,606.30 1,206.30 207.38 15.42 126.97 742.96 20,710.50
GPU 37.52 916.54 137,729.39 1,190.32 236.03 15.73 128.43 1,276.49 20,707.72
GPU 33.99 936.44 145,870.27 1,209.92 220.32 15.56 156.92 925.97 20,706.60
GPU 38.63 804.80 121,314.86 1,177.88 225.26 14.82 147.35 1,715.38 20,704.36
GPU 39.50 645.15 127,713.55 1,133.51 230.44 15.76 136.74 1,054.60 20,707.92
GPU 45.26 727.07 104,419.79 1,066.93 254.98 14.72 159.17 1,357.28 20,710.06
GPU 43.49 844.17 155,562.56 914.05 228.61 14.74 180.26 1,749.65 20,703.45
GPU 41.12 809.00 117,463.82 1,139.54 210.75 15.54 162.61 1,450.71 20,711.72
GPU 44.30 635.64 111,732.80 1,024.59 207.29 15.58 139.15 1,406.60 20,708.95
GPU 43.08 762.64 170,929.52 1,096.76 225.29 14.80 129.73 1,067.60 20,704.33
Abbreviations: CPU: Central processing unit; GPU: Graphics processing unit.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

42

Table A2. Output data of the speedup test for compute unified device architecture‑simplified swarm optimization
Type Particle size 100 200 300 350
CPU 1 49.063 191.183 437.161 564.453
CPU 2 49.073 189.712 439.999 562.614
CPU 3 48.418 190.58 440.908 565.67
CPU 4 47.88 192.824 437.476 563.651
CPU 5 47.758 192.861 428.533 563.799
CPU 6 48.389 191.056 434.753 565.119
CPU 7 49.176 188.301 434.557 571.929
CPU 8 48.248 190.205 431.854 575.904
CPU 9 48.212 189.323 435.387 568.348
CPU 10 50.346 189.678 432.782 582.892
CPU 11 49.061 192.337 432.366 583.594
CPU 12 49.662 194.05 427.215 607.547
CPU 13 49.306 195.631 429.057 601.964
CPU 14 49.547 192.663 433.167 598.993
CPU 15 48.484 197.172 435.056 599.659
CPU 16 48.968 196.5 432.65 598.553
CPU 17 48.827 195.68 439.168 604.617
CPU 18 48.903 197.722 436.881 591.776
CPU 19 47.779 196.185 439.258 594.146
CPU 20 49.426 198.394 438.808 589.143

Average 48.8263 193.10285 434.8518 582.71855
GPU 1 0.15 0.166 0.18 0.19
GPU 2 0.139 0.152 0.174 0.167
GPU 3 0.139 0.144 0.162 0.166
GPU 4 0.138 0.144 0.169 0.174
GPU 5 0.138 0.142 0.156 0.161
GPU 6 0.139 0.143 0.167 0.172
GPU 7 0.141 0.148 0.157 0.16
GPU 8 0.136 0.154 0.16 0.169
GPU 9 0.137 0.159 0.161 0.17
GPU 10 0.136 0.146 0.166 0.165
GPU 11 0.137 0.173 0.166 0.165
GPU 12 0.136 0.168 0.162 0.172
GPU 13 0.137 0.153 0.163 0.169
GPU 14 0.143 0.152 0.162 0.177
GPU 15 0.144 0.151 0.166 0.161
GPU 16 0.135 0.16 0.165 0.177
GPU 17 0.14 0.168 0.165 0.169
GPU 18 0.135 0.158 0.158 0.166
GPU 19 0.134 0.15 0.158 0.17
GPU 20 0.141 0.149 0.159 0.17
Average 0.13875 0.154 0.1638 0.1695
Abbreviations: CPU: Central processing unit; GPU: Graphics processing unit.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

