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Abstract

Graphics processing units (GPUs) have emerged as powerful platforms for parallel computing, enabling personal 
computers to solve complex optimization tasks effectively. Although swarm intelligence algorithms naturally lend 
themselves to parallelization, a GPU-based implementation of the simplified swarm optimization (SSO) algorithm has 
not been reported in the literature. This paper introduces a compute CUDA-SSO algorithm on the CUDA platform, 
with a time complexity analysis of O (Ngen × Nsol × Nvar), where Ngen is the number of iterations, Nsol is the 
population size (i.e., number of fitness function evaluations), and Nvar represents the required pairwise comparisons. 
By eliminating resource preemption of personal best and global best updates, CUDA-SSO significantly reduces 
the overall complexity and prevents concurrency conflicts. Numerical experiments demonstrate that the proposed 
approach achieves an order-of-magnitude improvement in run time with superior solution precision relative to central 
processing unit-based SSO, making it a compelling methodology for large-scale, data-parallel optimization tasks.

Keywords: Compute Unified Device Architecture, Graphics Processing Unit, Parallelism, Simplified Swarm 
Optimization, Swarm Intelligence Algorithms

1. Introduction
In recent years, graphics processing units 

(GPUs) have significantly impacted high-performance 
computing, particularly for data-  and compute-
intensive applications. Originally designed to 
accelerate real-time three-dimensional graphics, 
GPUs now offer a parallel architecture that can handle 
massive throughput in general-purpose scientific 
computing. Thanks to the availability of thousands 
of arithmetic logic units (ALUs) and large memory 
bandwidth, personal computers equipped with modern 
GPUs have become highly effective platforms for 

performing large-scale computations (AlZubi et al., 
2020; Hachaj & Piekarczyk, 2023). This evolution 
has fueled a surge of interest in GPU-accelerated 
algorithms across diverse fields, including medical 
image processing (Corral et al., 2024; Mittal & Vetter, 
2014), energy optimization (Mortezazadeh et al., 
2022), and geospatial modeling (Hager et al., 2008).

One notable class of algorithms that can benefit 
significantly from the massive parallelism of GPUs is 
swarm intelligence (SI). Swarm intelligence algorithms 
(SIAs), such as particle swarm optimization (PSO), 
genetic algorithms (GA), and fireworks algorithms, 
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draw inspiration from natural phenomena (e.g., bird 
flocking, fish schooling, and evolutionary processes). 
By orchestrating collective behaviors, these methods 
iteratively refine candidate solutions within a high-
dimensional search space (Abbasi et al., 2020; Navarro 
et al., 2014; NVIDIA, n.d.). SIAs naturally lend 
themselves to parallel implementations, since core 
operations such as fitness evaluation and local solution 
updating occur at the per-particle or per-agent level, 
often with minimal dependency among individuals. 
Prior studies have documented considerable speedups 
when porting SIAs to GPU architectures (Tan & Ding, 
2015; Yeh, 2017; Yeh & Wei, 2012; Yildirim et al., 
2015), highlighting the strong synergy between swarm 
parallelism and GPU hardware concurrency.

Despite the demonstrated success of GPU-based 
SIAs, one variant, simplified swarm optimization 
(SSO), has received limited attention on modern parallel 
platforms. Since its inception in 2009 (Lee et al., 2012), 
SSO has proven to be an effective population-based 
search method, praised for its conceptual simplicity 
and robust performance on real-world optimization 
tasks (Corley et al., 2006; Luo et al., 2019; Yeh, 2015). 
However, existing research on SSO has primarily 
examined serial (central processing unit [CPU]-based) 
implementations, leaving a conspicuous gap regarding 
its parallel potential. By focusing on SSO, researchers 
can harness its inherently straightforward swarm-update 
rules to realize high degrees of concurrency. Moreover, 
the method’s minimal parameter requirements and 
flexible encoding scheme make it a compelling 
candidate for GPU-based large-scale optimization.

To address this gap, we propose a compute unified 
device architecture (CUDA) SSO (CUDA-SSO) 
framework under the NVIDIA CUDA environment. 
Departing from sequential SSO procedures, CUDA-
SSO capitalizes on concurrent kernel launches to 
distribute the computational workload across thousands 
of GPU threads. This design not only accelerates 
fitness evaluations, typically the most time-consuming 
step in swarm algorithms, but also introduces a parallel 
update mechanism to circumvent resource-preemption 
issues associated with personal best (pBest) and 
global best (gBest) states in swarm-based searches. 
By carefully encapsulating data in global memory and 
minimizing CPU–GPU data transfers, we demonstrate 
both improved solution quality and a drastic reduction 
in overall execution time.
The main contributions of this paper are:
(i)	 A novel GPU-based SSO framework (CUDA-

SSO) that adopts data-parallel kernels and 
reduces the theoretical time complexity of swarm 
search steps.

(ii)	 A discussion of resource conflict avoidance by 
re-structuring personal and gBest updates in a 
parallel context.

(iii)	 A comprehensive evaluation of standard 
benchmark functions, showcasing an order-of-
magnitude speedup in run time, accompanied by 
higher solution accuracy than CPU-based SSO 
implementations.
The remainder of this paper is organized as 

follows. Section 2 presents an overview of the 
classical SSO algorithm, the fundamentals of general-
purpose GPU computing, and related GPU-based 
SIAs. Section 3 details the proposed CUDA-SSO 
algorithm, including its kernel-based design, memory 
model, and theoretical time complexity analysis. 
Section 4 provides experimental results with various 
benchmark functions, comparing performance and 
precision against the baseline CPU-based SSO. 
Finally, Section 5 summarizes the findings, discusses 
potential improvements, and outlines directions for 
future work.

2. Background
Recent advances in high-performance computing 

and optimization have witnessed the integration of 
diverse approaches such as SI, evolutionary strategies, 
and gradient-based search methods. In particular, 
SIAs offer decentralized collective search capabilities, 
while gradient descent (GD) relies on local derivative 
information to iteratively refine candidate solutions. 
Understanding how these paradigms intersect—
or diverge—can shed light on algorithmic design 
principles that balance global exploration with local 
exploitation. This section introduces SSO, a data-
parallel swarm algorithm noted for its streamlined 
update rules. We then highlight key distinctions 
between GD and swarm-based approaches, discuss 
the essentials of general-purpose GPU (GPGPU) 
computing, and conclude with an overview of relevant 
GPU-based SIAs to contextualize the motivations 
behind our work on CUDA-SSO.

2.1. SSO
SSO was initially proposed by Yeh (2009) as a 

lightweight yet robust variant of SI, offering a balance 
between algorithmic simplicity and practical 
performance. Unlike more elaborate SIAs (e.g., PSO 
with velocity–position updates or GA with crossover–
mutation operators), SSO employs a small set of 
parameters (Cw, Cp, and Cg) that guide the sampling of 
new solutions from each particle’s current state ( xij

t ), 
pBest ( pij

t ), and gBest (gj). This approach obviates the 
need for velocity vectors or mutation rates, reducing 
the parameter-tuning overhead that can complicate 
other SIAs.

Fundamentally, each iteration of SSO can be 
broken into:
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(i)	 Solution update: For each solution i and variable 
j, the new solution xij

t( )+1  is drawn from one of 
three sources—current solution, pBest, or gBest 
based on probabilities (Cw, Cp, and Cg).

(ii)	 Fitness evaluation: Each updated particle is 
assigned a fitness score xij

t( )+1 .
(iii)	 Best-value updates: If f(Xi) is better than 

a particle’s pBest, it is replaced. If f(Xi) 
outperforms the current gBest, it is updated 
accordingly.

2.1.1. Fundamental concepts and update strategy
SSO operates over a population 

X ii
t | , , ,= …{ }1 2 Nsol , where X x x xi

t
i
t

i
t

i m
t= ( , ,..., ), , ,1 2  

is a vector representing the ith candidate solution at 
generation t and xi j

t
,  is the jth variable in Xi

t  for t = 1, 
2,…, Ngen and i = 1, 2,…, Nsol. Two supporting data 
structures track the algorithm’s progress:
(i)	 pBests: Pi = (pi,1,pi,2.,pi,m): The historically best 

position of each particle, reflecting individually 
optimal solutions found over previous iterations.

(ii)	 gBest: PgBest = (g1,g2.,gm): The optimal solution 
observed across the entire population.
Within each iteration, SSO applies a simple step 

function to update the value of each variable xi j
t
,  in 

the solution Xi
t . As shown in Eq. (1), a random 

number ρ is a random value drawn from a continuous 
distribution ranging from 0 to 1, which drives the 
selection among four possibilities: retaining the current 
value xi j

t
, , adopting pi,j, adopting gj, or performing no 

update.

x

x if C c

p if C C C c

g if C
i j
t

i j
t

w w

i j w p w p

j
,

,

,

� ,

� ,
+ =

∈ = )
∈ = + )
∈

1

0ρ

ρ

ρ pp g p g

g

C C c

x if C

,

,

= + )
∈  )













 ρ 1

� (1)

Here, pi,j denotes the jth coordinate of the pBest 
of the ith solution, and gj represents the corresponding 
coordinate in gBest. The relative magnitudes of 
(Cw, Cp, and Cg) balance exploration (i.e., adopting 
global or pBests) against exploitation (i.e., retaining 
current values). This compact parameterization 
facilitates a more controlled search dynamic than in 
many other SIAs.

2.1.2. Advantages of SSO over genetic algorithms
Genetic algorithms have historically been a 

cornerstone of evolutionary computation, relying on 
crossover and mutation operations to evolve solution 
populations. However, SSO can frequently perform 

better in certain problem classes due to its simpler 
update mechanism and more focused parameter space. 
Key comparative advantages of SSO include:
(i)	 Reduced parameter tuning: Traditional GAs 

demand meticulous adjustment of crossover rates, 
mutation probabilities, and selection schemes. By 
contrast, SSO relies on three probabilities (Cw, 
Cp, and Cg) to guide each variable’s update. This 
hyperparameter reduction often translates into 
faster and more reproducible experimentation, 
minimizing the risk of suboptimal tuning.

(ii)	 Potentially faster convergence: In SSO, 
particles can directly adopt globally optimal 
positions, whereas GAs depend on randomized 
genetic operators to spread promising traits. 
Consequently, SSO may converge more rapidly 
on certain continuous or weakly multimodal 
functions, mainly when the objective landscape 
permits direct exploitation of high-fitness 
regions.

(iii)	 Implementation simplicity: GA-based crossover 
and mutation operators can become complicated 
when dealing with high-dimensional or 
heterogeneous solution representations. SSO’s 
step-function update—requiring only a few 
lines of code—facilitates implementation clarity, 
reducing the likelihood of design or coding 
errors.

(iv)	 GPU suitability: Although GAs can be parallelized, 
SSO’s probabilistic mechanism, wherein each 
variable is updated according to a small set of 
global or pBests, typically presents fewer data 
dependencies across particles. This structure 
lends itself well to massive parallelization on 
GPUs, making SSO an attractive option for large-
scale optimization tasks in high-performance 
computing environments.
Hence, SSO offers a comparatively 

straightforward and potentially more consistent 
pathway to large-scale optimization, particularly when 
research or industrial constraints limit tuning resources 
or demand high solution fidelity within compressed 
timeframes.

2.1.3. SSO flowchart
SSO’s simplicity has proven advantageous 

in several applications. For instance, Chung & 
Wahid (2012) and Yeh (2012; 2013) demonstrate 
its effectiveness in tackling complex real-world 
tasks such as reliability design and feature selection. 
Further refinements, such as orthogonal SSO (Yeh, 
2014), reinforce the adaptability of SSO’s framework. 
However, although prior literature confirms SSO’s 
suitability for large-scale research, most studies have 
employed CPUs, where time complexity grows rapidly 
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with the population size and dimensionality. This 
motivates the pursuit of a GPU-based parallelization 
strategy that can leverage SSO’s inherent data-parallel 
characteristics.

Algorithm 1 outlines the typical CPU-based SSO 
flow. Each iteration updates particles by sampling 
the step function, evaluates the fitness value for 
each particle, and updates pBests and gBest if any 
improvement is found. Although CPU-SSO can 
yield excellent results for moderate-scale problems, 
it becomes slow when the population and number of 
variables are large.

Algorithm 1. The typical CPU-based SSO
Initialize:
       Nsol = 50, Nvar = 30, Ngen = 100
       Var_max = 5.12, Var_min = -5.12
       sol = Nsol × Nvar
       pBests = Nsol × Nvar
       gBest = 0
       Cw = 0.2, Cp = 0.5, Cg = 0.8
       explorationTime = 0

while explorationTime ≤ cpuTimeLimit do
       for iter in 1 to Ngen do
       �stepFunc(sol, pBests, gBest, randNum(Var_max, 

Var_min))
        evaluate(solF, pF, gF)
         if solF < pF then pBests(i) = sol(i)
             if solF < gF then gBest = sol(i)
             end if
           end if
        end for
end while

2.2. General-Purpose GPU Computing
Modern GPUs were originally engineered 

to accelerate real-time three-dimensional graphics 
tasks such as rasterization and shading. Over time, 
these architectures evolved into GPGPU (Hussain 
et al., 2016), wherein highly parallel GPU hardware 
is repurposed to handle a variety of data-intensive 
computations. By distributing large workloads among 
thousands of arithmetic cores, developers offload 
parallel tasks to the GPU while reserving more 
complex, serial procedures for the CPU.

2.2.1. Execution model (CUDA framework)
NVIDIA’s CUDA (NVIDIA, n.d.) extends C/

C++ to enable heterogeneous computing. In CUDA, 
the following function types determine where (CPU 
vs. GPU) and how (serial vs. parallel) code is executed:
(i)	 Host functions: Host code is defined in C/

C++ and runs on the CPU. It is responsible for 
high-level logic, memory allocation, and kernel 
launch.

(ii)	 Kernel functions: GPU kernels are invoked 
by the CPU but executed on the GPU, and 
are subdivided into thread blocks and further 
organized into warps of 32 threads, following 
the single instruction, multiple threads paradigm. 
They are ideal for data-parallel workloads such 
as fitness evaluations or array/vector operations.

(iii)	 Device functions: Device functions are defined 
and executed only on the GPU and are typically 
called from within kernel functions to factor out 
repeated computations.
In this model, thousands of concurrent threads 

can be spawned to run the same kernel, allowing GPUs 
to efficiently process large, independent datasets.

2.2.2. Compute unified device architecture 
memory hierarchy

Compute Unified Device Architecture’s memory 
model separates storage into multiple tiers, each 
balancing capacity and speed.
(i)	 Registers: Per-thread registers provide high-

speed storage and are best suited for frequently 
accessed variables that do not exceed the register 
file capacity.

(ii)	 Shared memory: On-chip shared memory 
allocated per block enables fast data exchange 
among threads in the same block and is 
particularly useful for shared computations, 
partial sums, and other cooperative tasks where 
multiple threads access and modify the same 
data.

(iii)	 Global memory: Off-chip global memory 
provides large-capacity storage accessible by all 
threads but has relatively high latency compared 
to on-chip resources, making efficient access 
patterns (e.g., memory coalescing) essential to 
achieve high throughput.

(iv)	 Constant and texture memory: Read-only caches 
accelerate common look-ups and are helpful 
when all threads repeatedly use the same constant 
or when two-dimensional array access patterns 
can be optimized via texture hardware.
High-performance GPU applications often 

involve coalescing memory accesses, judiciously 
using shared memory, and minimizing branch 
divergence (warp divergence). These considerations 
ensure that multiple threads fetch contiguous elements 
simultaneously and execute consistent instruction 
paths whenever possible.

2.2.3. Data transfers and central processing unit-
GPU coordination

Since the CPU and GPU have separate memory 
spaces, data must typically be transferred via the 
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Peripheral Component Interconnect Express (PCIe) 
bus. Although essential for many GPGPU workflows, 
these transfers introduce non-negligible latency. 
Strategies to reduce transfer overhead include:
(i)	 Batching data: Copying large chunks of data at a 

time rather than frequent small transfers.
(ii)	 Asynchronous transfers: Overlapping data 

transfers with kernel execution improves device 
utilization.

(iii)	 Unified Memory: Leveraging CUDA’s managed 
memory features to let the runtime handle page 
migrations between CPU and GPU, albeit with 
some overhead for page-fault handling.

2.2.4. Implications for SIAs
SIAs—including PSO, GA, Firefly Algorithm, 

and SSO—naturally benefit from GPGPU acceleration 
due to their population-based structure. Each 
individual (particle, agent, or chromosome) can be 
evaluated in parallel, and gBest values can be updated 
in a relatively small overhead step.
(i)	 Fitness evaluations: Commonly, the most 

significant computational bottlenecks can be 
massively parallelized by assigning a subset of 
particles (or subdimensions) to separate threads 
or warps.

(ii)	 Update mechanisms: Since SIA updates often 
involve reading global parameters (e.g., best 
solutions) and then writing back updated values 
for each particle, careful design of coalesced 
memory accesses and thread synchronization 
(e.g., to avoid race conditions when writing to a 
gBest value) is critical.

(iii)	 Data dependencies: Many SIAs only require 
limited information exchange—such as neighbor-
based or globally best-based communication—so 
the parallel workload is generally well-defined. 
Nonetheless, if a swarm’s communication 
topology is complex (e.g., hierarchical or 
multiswarm structures), the kernel must 
incorporate additional synchronization steps or 
multiple kernel launches to handle inter-group 
interactions without causing warp divergence or 
data hazards.
When population sizes or problem dimensions 

become large, GPU-enabled SIAs can harness 
thousands of parallel threads across multiple 
streaming multiprocessors (SMs), substantially 
reducing run time relative to CPU-only approaches. 
Consequently, adopting CUDA or similar frameworks 
for SIAs—while paying close attention to memory 
usage, thread management, and synchronization—can 
yield significant speedups in large-scale optimization 
scenarios. Synchronization in CUDA refers to 
coordinating the execution of threads to wait for each 

other at specific points—usually to ensure that data 
dependencies are respected (i.e., one thread does not 
read a value before another finishes writing it).

2.3. GPU-Based SIAs Implementation
Parallelization of SIAs on GPUs leverages the 

natural data-parallel structure of these methods. Within 
each iteration, every swarm particle (or agent) usually 
updates its position, evaluates its objective function, 
and exchanges information with other particles 
according to the algorithm’s communication model.

2.3.1. An Overview of notable GPU-based SIA
Table 1 provides an overview of notable GPU-

based SIAs, detailing which functions were ported to 
GPU kernels in representative studies. The summarized 
methods include standard and Euclidean PSO (Tsutsui 
& Fujimoto, 2009; W. Zhu, 2011), multichannel PSO 
(Krömer et al., 2011), multi-objective Gas (Wong, 
2009; H. Zhu et al., 2011), and GA/differential-
evolution hybrids (Mussi et al., 2011; Ruder, 2016), 
among others.

As these steps can be performed independently 
or partially synchronized, the GPU is well-suited to 
handle the large number of concurrent threads required 
to process high-dimensional populations.

2.3.2. Four key kernel functions
SIAs naturally align with parallel architectures 

due to their population-based structure (Yeh, 2017; Yeh 
& Wei, 2012). In a GPU context, typical SIA workflows 
can be divided into four key kernel functions:
(i)	 Initialize (I): Kernel Function (I) initializes the 

population with random numbers and stores them 
in global memory. Benefiting from the intuitive 
implementation and data access in global 
memory, most SIAs generated the population on 
the CPU (NVIDIA Corporation, 2012). It might 
have got a vast improvement for computing 
efficiency if (I) the population on GPU instead 
of CPU, although the way to arrange the global 
memory may not be that intuitive (Mussi et al., 
2011; Ruder, 2016).

(ii)	 Evaluate fitness (E): Krömer et al. (2011) have 
demonstrated that the most expensive step in 
SIAs was to evaluate candidate solutions. The 
most straightforward to deploy kernel function 
(E) is the master–slave paradigm, where the 
centralized controller dispatches particles in a 
single population for parallelism. This approach 
introduced no differences from an algorithmic 
perspective but reduced the time-consuming 
from a computational perspective.
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As shown in Table 1, Li & Zhang (2011) proposed 
a CUDA-based multichannel particle swarm algorithm. 
Wong (2009) implemented a parallel multi-objective 
GA. Tsutsui and Fujimoto (2009) ran a sequential SIA, 
dispatching a parallel GA for the particles.

According to NVIDIA (n.d.) and Mussi et  al. 
(2011), using shared memory in GPU code can 
guarantee speedup for data transferring. However, 
most did not perform (E) using shared memory.
(i)	 Communication (C): Unlike the directly 

distributing function (E), the function (C) proposes 
a more complicated model. It is distinguished by 
being loosely connected to the population and 
irregularly exchanging particles. Communicate 
mechanisms were enabled between swarms 
according to the law of data access, which means 
that communication between distributed groups 
of particles is acceptable.

(ii)	 Update Swarm (U): Adjust the positions or 
velocities (if applicable) of each particle based 
on shared information. Function (C) and function 
(U) do not have a single pattern to fit all SIAs. 
We must only attend to the warp divergence and 
bank conflict in these two functions.
Across these works, the (E) kernel typically offers 

the largest room for speedup, since fitness calculation 
often dominates the total run time. Many authors have 
thus focused on accelerating (E) by distributing the 
population’s fitness evaluations to GPU threads.

2.3.3. Implementation challenges
Despite the potential computational gains, 

several implementation challenges arise when porting 
SIAs to GPUs:

(i)	 Memory-access patterns and coalescing: 
Efficient GPU kernels rely heavily on coalesced 
global-memory transactions, whereby 
consecutive threads access consecutive memory 
addresses. Achieving such patterns can involve 
reorganizing particle data structures, interleaving 
population elements, or carefully aligning data to 
minimize misaligned accesses. Failure to do so 
can negate much of the theoretical speedup from 
parallelization.

(ii)	 Shared memory constraints: While shared 
memory is a low-latency on-chip resource that 
can accelerate repeated data accesses, the amount 
available per block (commonly 48 KB or less) 
may be insufficient for storing large populations 
or high-dimensional problems. Consequently, 
many GPU-based SIAs place most of their data 
in global memory and resort to shared memory 
only for small suboperations, such as partial 
sums or local best-value comparisons.

(iii)	 Warp divergence and synchronization: GPU 
threads operate in warps of 32 concurrent threads. 
If branches in the kernel cause differing execution 
paths within the same warp, performance can 
degrade significantly due to warp divergence. 
SIA kernels that incorporate random sampling, 
conditionals for updating best solutions, or 
communication topologies must minimize thread 
divergence and carefully place synchronization 
barriers (syncthreads or kernel launches) to avoid 
race conditions when reading/writing global or 
shared data structures (e.g., gBest positions).

(iv)	 Communication topologies: In many SIAs, 
information sharing is crucial for guiding the 
swarm. This communication can be ring-based, 

Table 1. Summary of studies of taxonomy analysis for swarm intelligence algorithms
References Swarm intelligence 

algorithm
Methodology Speedup

Tsutsui & Fujimoto 
(2009)

Stand particle swarm 
optimization (PSO)

(I), (C), (U) on CPU. (E) on a GPU without shared 
memory

×6–8

W. Zhu (2011) Euclidean PSO (I), (C), (U) on CPU. (E) on a GPU without shared 
memory

×1–5

Krömer et al. (2011) Multichannel PSO (U) on CPU, (I), (E), (C) on a GPU without shared 
memory

×30

Wong (2009) Multi‑objective genetic 
algorithm (GA)

(I) on CPU, (E), (C), (U) on a GPU without shared 
memory

10–2

H. Zhu et al. (2011) Coarse‑grain 
parallelization of GA

(I), (C), (U) on CPU, (E) on a GPU only without shared 
memory

×60

Li & Zhang (2011) Asynchronous and 
synchronous PSO

(I), (E), (C), (U) on a GPU with shared memory ‑

Mussi et al. (2011) GA (I), (E), (C), (U) on a GPU with shared memory ×2–12
Ruder (2016) GA and differential 

evolution (DE)
(I), (E), (C), (U) on a GPU with shared memory and 
synchronization

×3–28 for GA, 
×19–34 for DE

Abbreviations: C: Communication; E: Evaluate fitness; I: Initialize; U: Update swarm
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star-based, hierarchical, or fully connected. 
Implementing these topologies on a GPU requires 
balancing frequent data exchanges with the cost of 
global or shared-memory transactions, especially 
as the population grows. Some researchers 
tackle this by employing loosely coupled 
subswarms, reducing the number of cross-group 
communications and associated overhead.

(v)	 Scalability and precision: GPU-based SIAs often 
demonstrate significant speedups over CPU 
counterparts when the population size is large 
enough to saturate GPU resources. However, if 
the swarm or dimensionality is too small, kernel-
launch overhead and data-transfer latencies may 
outweigh parallelization benefits. Furthermore, 
some applications demand higher-precision 
arithmetic (e.g., double precision) that can 
reduce throughput on specific GPU architectures. 
Algorithm designers must thus tune swarm sizes, 
memory layouts, and data precision settings for 
optimal results.
These considerations indicate that GPU-based 

SIAs benefit most when carefully tailored to exploit 
hardware concurrency while mitigating memory and 
synchronization bottlenecks. Ongoing advances in 
GPU architectures—expanded on-chip memory, more 
sophisticated warp schedulers, and built-in library 
support—continue to ease the adaptation of SIAs for 
large-scale, real-world optimization problems.

Building on these insights, the present work aims 
to extend SSO into the GPU domain, integrating the 
conceptual simplicity of SSO’s update mechanism 
with the massive parallelism of CUDA. Our proposed 
CUDA-SSO applies kernel-based parallelization 
to SSO’s most time-consuming and data-parallel 
steps, achieving significant speed gains and avoiding 
concurrency conflicts when updating personal and 
gBest states. In the following section, we elaborate on 
the algorithmic framework of CUDA-SSO, including 
memory organization, random number generation, and 
a theoretical complexity analysis.

3. Compute Unified Device Architecture-SSO
Compute Unified Device Architecture-SSO 

adapts the conventional SSO to leverage CUDA’s 
parallelism. As illustrated in Fig.  1, each kernel 
function runs concurrently across threads, reducing 
both evaluation time and memory transaction overhead.

3.1. Random Number Generation
Random number generation (RNG) is essential 

in SIAs because almost every aspect of the search—
particle initialization, stochastic exploration, and 
crossover/mutation (in other SIAs)—depends on 

drawing pseudo-random values. In CUDA-SSO, 
these numbers govern how each variable in a particle 
decides whether to retain its current value, adopt its 
pBest, or adopt the gBest. As a result, generating 
robust random values at high speed is critical to ensure 
both algorithmic performance and solution diversity.

A naive approach to RNG would compute 
random numbers on the CPU and then transfer them to 
the GPU each iteration. However, such data movement 
across the PCIe bus can introduce significant latency. 
Instead, CUDA-SSO uses NVIDIA’s cuRAND 
(random number generation library (NVIDIA, n.d.) 
to generate random numbers directly on the GPU, 
thereby reducing CPU–GPU switching overhead. 
The following points highlight key considerations for 
efficient RNG in CUDA-SSO.
(i)	 cuRAND generators: NVIDIA’s cuRAND library 

provides multiple generator types (e.g., Philox, 
Mersenne Twister, and XORWOW) suited to 
various performance and quality requirements. 
Philox typically offers a good balance for most 
GPU-based Monte Carlo or optimization tasks 
due to its combination of speed and sufficiently 
robust randomness.

(ii)	 State management: A  dedicated initialization 
kernel uses cuRAND application programming 
interfaces to set up independent RNG states for 
each thread on the GPU. Each state is assigned a 
seed, sequence number, and offset. This allows 
threads to maintain independent RNG states, 
avoiding global memory contention during the 
main kernel execution.

(iii)	 Scalability: Due to CUDA-SSO allocating one or 
more threads per particle/variable, the number of 
random values can become quite large, reaching 
Nsol × Nvar × Ngen. However, cuRAND’s 
batched generation methods allow bulk requests 
of random values, leveraging GPU concurrency 
to rapidly produce millions of samples.

(iv)	 Memory footprint and access: RNG states 
are typically stored in global memory for all 
threads to access during kernel execution, 
with each thread updating its local state after 
retrieving random samples via curand (& state). 
To minimize overhead, threads often load their 
RNG state into registers, generate all required 
samples, and write the state back to global 
memory only once per iteration, reducing global 
memory transactions.

(v)	 Kernel integration: Each thread within the main 
CUDA-SSO search kernel can invoke cuRAND 
library calls to draw random floats (e.g., uniform 
or normal distributions) and apply them to the 
SSO step function. While careful synchronization 
may be necessary if multiple threads share RNG 
states, this is typically avoided by assigning 
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unique states to each thread.
(vi)	 Quality versus speed: While XORWOW 

offers faster performance, it may exhibit lower 
randomness quality for specific statistical tests. 
Although Philox or Mersenne Twister variants 
may run slightly slower, they often deliver 
more reliable distributions. While most swarm 
optimizations work well with any reasonably 
distributed, uncorrelated RNG, mission-critical 
or precision-sensitive applications may require 
more robust generators.
By generating all random numbers on the GPU, 

CUDA-SSO avoids frequent PCIe transfers and ensures 

that random samples are available on demand with 
minimal latency. This strategy significantly improves 
the algorithm’s scalability, allowing Nsol × Nvar × Ngen 
random draws to be produced efficiently as the swarm 
evolves. Consequently, RNG bottlenecks, which often 
plague GPU-accelerated optimization, are effectively 
mitigated, paving the way for faster and more diverse 
exploration in the high-dimensional search space.

3.2. Thread Organization
Efficient thread organization is a cornerstone of 

high-performance GPU applications, and CUDA-SSO 

Fig. 1. Proposed compute unified device architecture-simplified swarm optimization
Abbreviations: C: Communication; CPU: Central processing unit; E: Evaluate fitness; gBest: Global best; 

GPU: Graphics processing unit; I: Initialize; pBests: Personal bests; PSSO: Particle-based simplified swarm 
optimization; U: Update swarm
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takes advantage of CUDA’s execution hierarchy to 
maximize throughput and minimize uncoalesced 
memory accesses. This section details how thread 
blocks, warps, and memory layouts are arranged to 
accommodate large particle populations and high-
dimensional search problems.

3.2.1. Warp-level particle management
In CUDA-SSO, each warp—consisting of 32 

threads—typically maps to one particle, such that the 
warp’s threads can collaboratively handle that particle’s 
variables (position vector, random updates, and fitness 
computation). This design has several advantages.
(i)	 Straightforward synchronization: Since a 

warp executes in a lockstep single-instruction 
multiple-threads fashion, synchronization within 
the warp is simpler. For many operations, native 
warp intrinsics (e.g., __syncwarp()) allow 
partial sums or shared computations to be done 
without incurring the overhead of a block-wide 
synchronization (__syncthreads()).

(ii)	 Fine-grained parallelism: If a particle has Nvar 
variables, they can be distributed across multiple 
threads, allowing partial work (e.g., updating 
each variable or computing partial fitness) to 
proceed in parallel within the same warp.

(iii)	 Reduced warp divergence: Since all threads 
in a warp handle logically contiguous parts 
of the same particle, branching is minimized. 
Divergence primarily arises if the particle’s data 
triggers conditionals (e.g., random updates to 
different variables). However, these are usually 
minor compared to divergences caused by 
dissimilar data accesses across multiple particles.
Compute unified device architecture’s thread 

blocks group warps together, and a grid of blocks 
covers the entire population.

Block sizes are chosen in multiples of 32 
(e.g., 128, 256, and 512 threads/block) to ensure warp 
alignment. In CUDA-SSO, a block typically manages 
several particles—each warp in the block handles a 
separate particle’s data.

Grid sizes are determined by how many blocks 
are needed to encompass all particles. For instance, if 
the swarm has Nsol =  10,000 particles and each block 
manages eight warps, we need at least 10,000/8 = 1,250 
blocks to cover the swarm. This approach scales 
well on modern GPUs with multiple SMs capable of 
running dozens of blocks concurrently.

To fully utilize GPU bandwidth, CUDA-SSO 
arranges each particle’s data (e.g., position vector, best 
values) contiguously in global memory. When warp 
threads access consecutive addresses, coalesced reads 
reduce the required memory transactions. Key design 
elements include:

(i)	 Particle-centric layout: The position vector, 
pBest, and related metadata for each particle are 
stored back-to-back in memory. Threads within a 
warp access sequential indices, aligning memory 
requests with hardware transaction boundaries.

(ii)	 Avoiding strided access: If data for a single 
particle were scattered or interleaved with multiple 
particles, warp threads would fetch non-consecutive 
addresses, leading to uncoalesced accesses and 
lowered throughput. By contiguously grouping 
a particle’s variables, CUDA-SSO preserves 
coalescing even when the swarm is large.

(iii)	 Shared memory trade-off: Although shared 
memory can accelerate repeated data accesses 
(e.g., partial sums), large swarm sizes (hundreds 
or thousands of particles, each with tens to 
hundreds of variables) rapidly exceed the 
typical 48–96 kb shared memory per block. 
Consequently, global memory becomes the main 
data store. Nevertheless, kernel designers may 
still use shared memory for sub-operations (e.g., 
block-level reductions) if it is feasible within the 
memory budget.

3.2.2. Synchronization and concurrency
Swarm intelligence demands occasional 

synchronization to ensure that updated particle states 
or gBest values are consistently available. In CUDA-
SSO, two main synchronization patterns arise:
(i)	 Warp-level: For tasks that only require threads 

within the same warp to coordinate—such as 
partial computation of a single particle’s fitness—
warp intrinsics (__syncwarp()) suffice. This is 
faster than a full __syncthreads(), affecting all 
block threads.

(ii)	 Block-  or grid-level: Specific global or pBest 
updates may require broader synchronization:
•	 __Syncthreads() ensures all threads in the 

block finalize local data before proceeding.
•	 Multiple kernel launches act as implicit grid-

wide barriers, guaranteeing that all blocks 
complete one stage (e.g., updating pBests) 
before starting the next (e.g., computing the 
gBest).

Ensuring all local updates are complete 
before any best-value comparisons helps avoid race 
conditions, which might otherwise lead to inconsistent 
reads or partial updates of shared variables.

For huge swarms or high-dimensional search 
spaces, a single kernel launch might strain available 
GPU memory or underutilize certain multiprocessors. 
CUDA-SSO addresses these scenarios by subdividing 
the population:
(i)	 Population splitting: Instead of handling all 

NsolN_{\mathrm{sol}} particles in one kernel, the 
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swarm can be partitioned into subsets processed 
by multiple sequential kernel launches or multiple 
streams. Each subset undergoes search and fitness 
evaluation before merging partial bests.

(ii)	 Multi-kernel scheduling: Modern GPUs support 
concurrent kernels, enabling partial overlaps in 
execution. If each subset’s memory footprint is 
smaller, more streams can run concurrently on 
different SMs, improving load balancing and 
overall throughput.

(iii)	 Trade-off: Although subdividing can improve 
concurrency, it introduces additional steps for 
merging partial gBest values across subsets. 
Careful scheduling is needed so that merging 
overhead does not offset gains from improved 
load distribution.
By adhering to warp-based particle updates, 

coalesced memory access patterns, and appropriate 
synchronization, CUDA-SSO efficiently distributes 
workload across a GPU’s many SMs. In turn, this 
enables (i) high utilization, where a large swarm or high-
dimensional setting can saturate GPU computational 
resources, (ii) scalability, where as problem sizes grow, 
additional blocks and warps smoothly extend parallel 
coverage, and (iii) maintainability, where warp-level 
design keeps each particle’s logic self-contained, 
simplifying debugging and code maintenance.

Developers must still tune parameters such as block 
size, register usage, and shared-memory allocations for 
specific GPU architectures (e.g.,  differences between 
NVIDIA Turing, Ampere, or Hopper architectures). 
Nonetheless, the fundamental strategy—one warp per 
particle, coalesced global memory, and synchronization 
barriers for best-value consistency—forms a robust 
template for realizing scalable, high-performance SI 
on GPUs (Gordon & Whitley, 1993; Hadley, 1964; 
Wolpert & Macready, 1995).

3.3. Compute Unified Device Architecture-SSO 
Implementation

Leveraging GPU-based parallelism requires a 
careful design of kernel functions, memory layouts, 
and synchronization strategies. In CUDA-SSO, each 
iteration (or generation) processes a large population 
of particles on the GPU, avoiding frequent transfers 
across the PCIe bus. By dividing search, fitness 
evaluation, and best-value updates into separate 
kernels, the algorithm can efficiently harness the 
GPU’s concurrent execution model.

3.3.1. Kernel-launch structure
Algorithm 2 illustrates the main flow of CUDA-

SSO. Each generation begins with random number 

generation on the GPU, followed by parallel kernels 
for the search process (step function) and fitness 
evaluations. Afterward, pBests and the gBest are 
updated in parallel, with each block or warp managing 
a subset of particles.

Algorithm 2. Flowchart for CUDA-simplified 
swarm optimization
sol = Nsol × Nvar
pBests = Nsol × Nvar
gBest = 0
set block size
syncThreads()

Initialize population
Initialize block size
Transfer data from CPU to GPU

//Kernel functions executed in parallel
for gen = 0 to Ngen do
      Search process for all particles         �//stepFunc in 

parallel
      syncThreads()
        Update pBest for each solution          //Kernel (U)
       Update gBest for each solution       //Kernel (U)
       syncThreads()
end for

Send data back to the CPU

The above design leverages the GPU’s parallel 
capabilities to handle large numbers of particles in 
each generation and ensures that intermediate results 
are kept consistent across all threads before the next 
update commences. Here is how it works:
(i)	 Parallel kernel launches: The design separates 

operations into distinct parallel kernels for the 
search process (step function) and for updating 
pBests and gBest values. This approach enables 
the concurrent execution of computation (E) 
and communication (C) operations before 
synchronizing for updates (U).

(ii)	 Synchronization: The system uses syncThreads() 
or similar synchronization barriers to ensure 
all threads complete their current operations, 
whether searching or updating optimal values, 
before moving forward. This synchronization 
is vital for preventing race conditions and 
maintaining consistent pBests and the gBest.

(iii)	 GPU–CPU transfers: To minimize PCIe bus 
overhead, data transfers between CPU and GPU 
occur only twice: once at initialization and once 
at completion. During iterations, all population 
data remains in GPU memory, following the 
memory management guidelines outlined in 
Section 3.2.
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3.3.2. Parallel updates of pBests and gBests
Algorithms 3 and 4 illustrate how pBests and 

the gBest are updated in a parallel environment. By 
distributing the workload across GPU threads, CUDA-
SSO prevents any single update from dominating run 
time and fully exploits GPU concurrency.

Algorithm 3. Parallel updates of personal bests.
syncThreads()
for each particle i in parallel do
     Load current sol[i] and pBests[i]
     if f(sol[i]) < f(pBests[i]) then
           pBests[i] = sol[i]
       end if
end for
syncThreads()

Algorithm 4. Parallel updates of the global best.
syncThreads()
for each particle i in parallel do
     Load current pBests[i] and gBest
     if f(pBests[i]) < f(gBest) then
           gBest = pBests[i]
       end if
end for
syncThreads()

Implementation details of Algorithms 3 and 4 are 
discussed in the following:
(i)	 Warp/block-level work: Each particle is 

processed in parallel. While it is not explicitly 

stated that one warp must correspond to a single 
particle, this configuration can be achieved by 
selecting suitable block and grid sizes, thereby 
reducing warp divergence and simplifying 
synchronization.

(ii)	 Coalesced memory access: In these snippets, each 
thread (or warp) reads data stored contiguously 
in global memory for the assigned particle i. If 
both sol i and pBest i reside in adjacent memory 
locations, warp-level access requests naturally 
coalesce into fewer transactions.

(iii)	 Synchronization points: The syncThreads() calls 
at the start and end of each code block ensure 
that all local read/write operations to pBests or 
gBest finish before another kernel or step begins. 
That is, the communication for global search 
does not rely on synchronization mechanisms, as 
these typically incur substantial overhead. Such 
barriers prevent partial updates or inconsistent 
reads across parallel threads.

3.4. Time Complexity Analysis
Compared to CPU-SSO’s sequential structure, 

CUDA-SSO distributes the update and evaluation 
workload over many GPU threads, effectively 
reducing the time complexity within each iteration. 
Fig.  2 contrasts CPU-SSO’s single-thread approach 
versus CUDA-SSO’s multi-thread parallelism. While 
CPU-SSO tends to scale with O(n3) under large 

Fig. 2. The time complexity analysis
Abbreviations: C: Communication; CPU: Central processing unit; CUDA: Compute unified device architecture; 
gBest: Global best; GPU: Graphics processing unit; pBests: Personal bests; SSO: Simplified swarm optimization
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4. Experiments and Analysis

4.1. Benchmark Functions and Design of 
Experiments

We tested nine standard benchmark functions, 
shown in Table  2. These functions include both 
separable and inseparable properties, with multimodal 
and unimodal complexities. Each function has a 
dimension of Nvar = 50. By controlling parameters such 
as Ngen (the maximum iteration count), Nsol (population 
size), and Nvar (number of variables), we gauge both 
the convergence (precision) and run time (speedup) of 
CPU-SSO versus CUDA-SSO.

From Table  3, we know we need to do a 
seven-factor experimental design, 128 experiments. 
It is impossible to do such a job with contracted 
computational resources. Thus, the parameters: 
block size, Nsol, Nvar, and Ngen were arranged as 
follows: 1,024, 100, 50, and 1000, referring to other 
papers (Li & Zhang, 2011; NVIDIA Corporation, 
2012).

The remaining parameters to be tested are the 
CUDA-SSO search parameters: Cw, Cp, and Cg. Six 
parameter levels were evaluated in the experiments, 
as shown in Table 4. The experimental design of the 
parameter combinations presented in Table  4 was 
analyzed using scipy.stats library (Pllana & Xhafa, 

Table 3. Experimental parameters of compute 
unified device architecture‑simplified swarm 

optimization
No. Graphics 

processing unit 
model

Compute unified device 
architecture‑simplified 
swarm optimization

1 Block size Cw, Cp, Cg

2 ‑ Population size: Nsol

3 ‑ Number of variables: Nvar

4 ‑ Number of generations: Ngen

Table 4. Factor for the parameters of compute 
unified device architecture‑simplified swarm 

optimization search
No. Cw, Cp, and Cg
1 0.1, 0.3, 0.7
2 0.1, 0.4, 0.8
3 0.2, 0.4, 0.6
4 0.2, 0.5, 0.9
5 0.3, 0.4, 0.5
6 0.3, 0.6, 0.8

Table 6. Precision comparison for central processing unit‑simplified swarm optimization and compute unified 
device architecture‑simplified swarm optimization

Function Central processing unit‑simplified swarm 
optimization

Compute unified device architecture‑simplified 
swarm optimization

Average Standard Minimum Average Standard Minimum
f1 54.9497 7.4781 39.0219 41.0156 5.3095 28.5125
f2 1,152.7869 110.1388 986.4035 820.1844 91.6444 635.6414
f3 192,950.2539 18,823.6598 162,102.9062 127,504.9484 17,093.0233 103,114.1562
f4 1,573.8801 179.6216 1,190.2180 1,103.9103 134.5448 730.0332
f5 269.3232 14.4775 248.3413 220.6183 16.2710 189.2935
f6 16.7117 0.2739 16.0508 15.2896 0.3655 14.7103
f7 199.0340 20.2784 156.4854 145.3612 19.4239 95.3518
f8 1,989.3588 396.4583 1,438.9280 1,181.2840 270.4324 727.8101
f9 20,719.6228 4.5922 20,706.0234 20,708.0471 3.6021 20,702.3574

Table 5. The parameter combinations analyzed using the Kruskal–Wallis H‑test
Parameters Values
Cw 0.1 0.1 0.2 0.2 0.3 0.3
Cp 0.3 0.4 0.4 0.5 0.4 0.6
Cg 0.7 0.8 0.6 0.9 0.5 0.8
Method

Ranking 3,843.173 1,968.923 4,840.817 2,037.200 6,270.421 1,919.306
Statistic 19,1.0773 p‑value 2.2989086e‑39

population sizes, CUDA-SSO exhibits near O(n) 
scaling in the dominating computational kernel.
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4.2. Precision and Speedup
This subsection shows the trial for CPU-SSO 

and CUDA-SSO in 20 independent runs by testing 
the benchmark functions (Table 2). The average result 
and corresponding standard deviation are illustrated 
in Table 6. We utilized the Friedman test (Friedman, 
1994) to verify differences. As described in Table 7, 
most cases have statistical differences for the precision 
of the solutions in CUDA-SSO.

In addition, the algorithmic flow and data 
structure of CUDA-SSO (Section 3.3) significantly 
improved the value of gBest. Table A1 shows the output 
data of the precision of the solutions for CUDA-SSO.

In general, as far as the average and the minimum 
of the performances were concerned, CUDA-SSO’s 
performances on multimodal function and unimodal 
function f1 to f9 worked better than CPU-SSO.

Besides the precision of the solutions, efficiency 
is a critical factor that must be considered. Speedup and 
efficiency are among the most common measurement 
methods to compare the test results. They were 
illustrated in Eq. (2) and Eq. (3). Nevertheless, either 
speedup or efficiency cannot reflect the exploitation 
of computational power. Thus, our research adopted 
performance criteria: rectified efficiency (Eq. [4]).

Speedup
Time
Time

CPU

GPU
= � (2)

Ratio
Power
Power

GPU

CPU
= � (3)

RE Speedup
Ratio

= � (4)

The output data of the speedup test for CUDA-
SSO is listed in Table A2. Speedup experiments are 
depicted in Table  8. A  series of experiments was 
carried out to check the speedup of CPU-SSO and 
CUDA-SSO. Among these experiments, the Nsol was 
set to 100, 200, 300, and 350, respectively. The result 
showed that CUDA-SSO accelerates up to ×164.2206 
compared with CPU-SSO when Nsol = 100. The 
speedup’s performance was becoming more prominent 
as the size of Nsol increased. The maximum speedup 
was ×1,604.3382 in the case of Nsol = 350.

2017) by the Kruskal–Wallis H-test. According to 
the Kruskal–Wallis H-test results in Table  5, the 
p=2.2989086e-39 is <0.05 in the 95% confidence 
level, indicating significant differences among the six 
parameter combinations. Based on the ranking values, 
the sixth parameter combination demonstrated the best 
performance. Therefore, the best performance was 
achieved when the parameters (Cw, Cp, and Cg) were 
set to (0.3, 0.6, and 0.8), which were adopted as the 
final parameter settings.

To set the same difficulty in all problems, 
first, we must choose a dimension particle size (P) 
search space for all benchmark functions. Second, 
we use the P obtained from the first step to test the 
performance of CUDA-SSO. In this subsection, 
the experiments are executed by the benchmark 
function f1.

We implemented CPU-SSO according to 
Section 2.1 and proposed CUDA-SSO, as described 
in Section 3. In mimics, we ran f1–f9  20  times 
independently, with 1000 iterations for each run. 
For CPU-SSO, we performed the same number 
of function evaluations as CUDA-SSO. The two 
algorithms have been tested on the same criterion 
for a fair comparison. The experimental parameters 
were set as follows: P=50, Cw=0.3, Cp=0.6, 
Cg=0.8. In our experimental environment, the 
comparison speedup was tested by Nsol = 100, 200, 
300, and 350.

Table 7. Friedman test for the precision 
of the solutions in compute unified device 
architecture‑simplified swarm optimization

Function Statistic p‑value
f1 19.9200 0.0002
f2 24.6000 0.0000
f3 24.6000 0.0000
f4 21.9600 0.0001
f5 24.6000 0.0000
f6 24.9600 0.0000
f7 21.7200 0.0001
f8 23.1600 0.0000
f9 19.5600 0.0002

Table 8. Running time and speedup for the benchmark function Rosenbrock
Nsol Central processing unit‑simplified swarm 

optimization
Compute unified device 

architecture‑simplified swarm optimization
Rectified efficiency

100 48.8263 0.13875 164.2206
200 193.10285 0.154 585.1602
300 434.8518 0.1638 1,238.8940
350 582.71855 0.1695 1,604.3382
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5. Conclusion
This paper introduced a GPU-based CUDA-

SSO, leveraging the well-known SSO’s simplicity and 
integrating it into the CUDA framework. By adopting 
a parallel processing strategy and minimizing data 
transfers between CPU and GPU, CUDA-SSO excels 
in computational speed and solution precision. Our 
experiments demonstrated:
(i)	 Time complexity reduction: CUDA-SSO 

mitigated CPU-SSO’s O(n3) scalability issues 
by distributing the workload across thousands of 
GPU threads.

(ii)	 Significant speedups: For benchmark functions, 
CUDA-SSO outperformed CPU-SSO with 
speedups up to ×1,604.34\times 1,604.34 at 
larger population sizes.

(iii)	 Improved solution accuracy: Statistical analysis 
(Friedman and Kruskal–Wallis tests) showed 
that CUDA-SSO yielded notably higher-quality 
solutions than CPU-SSO across multiple 
benchmark functions.
To improve the overall efficiency of the 

proposed approach, future research may explore 
alternative memory allocation strategies, as memory 
management plays a crucial role in the performance of 
parallel and distributed systems—particularly where 
access speed and bandwidth are critical. Adaptive 
memory techniques can help reduce latency, lower 
contention, and optimize resource usage. In addition, 
parameter tuning and choosing algorithmic parameters 
that significantly impact model effectiveness and 
computational cost should be emphasized. Future 
studies can achieve more scalable, efficient, and 
reliable performance by integrating efficient memory 
management with robust parameter tuning. Although 
rectified efficiency is introduced, future research could 
provide rigorous justification or comparisons with 
traditional parallel efficiency metrics.
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Appendix 

Table A1. Output data of the precision of the solutions for compute unified device architecture‑simplified 
swarm optimization

Type f1 f2 f3 f4 f5 f6 f7 f8 f9

CPU 57.82 1,069.30 185,060.89 1,344.71 259.23 16.95 196.72 1,786.07 20,718.92
CPU 39.02 1,207.01 179,721.33 1,579.31 260.32 16.84 234.03 1,438.93 20,712.57
CPU 60.39 1,010.91 231,277.19 1,305.95 251.80 16.52 181.27 2,504.35 20,706.02
CPU 49.92 1,024.91 217,473.16 1,595.23 253.40 16.88 175.41 2,661.07 20,722.49
CPU 53.80 993.56 234,086.36 1,466.08 291.53 16.65 200.09 1,911.11 20,721.33
CPU 56.81 1,213.34 195,778.31 1,601.14 284.36 16.58 202.84 1,842.27 20,721.46
CPU 53.31 1,058.56 194,398.47 1,479.26 263.41 16.76 203.98 2,825.84 20,725.72
CPU 47.54 1,361.57 190,197.06 1,705.98 249.95 17.20 184.71 1,768.86 20,719.32
CPU 69.00 986.40 162,102.91 1,647.99 269.47 16.62 213.29 1,462.96 20,721.66
CPU 61.88 1,281.48 173,873.59 1,536.36 286.90 16.72 189.20 1,773.87 20,719.98
CPU 62.03 1,256.16 184,865.73 1,619.13 279.64 16.62 201.49 2,083.50 20,713.47
CPU 60.32 1,204.71 192,596.94 1,699.70 265.15 16.40 218.22 2,384.77 20,722.15
CPU 49.26 1,147.99 200,337.53 1,679.18 284.74 17.02 197.28 1,662.26 20,717.72
CPU 63.23 1,041.88 212,481.92 1,731.55 257.07 16.46 235.21 1,544.44 20,721.78
CPU 61.97 1,206.52 164,635.55 1,641.58 278.79 16.41 158.47 1,481.78 20,717.70
CPU 60.68 1,233.61 177,676.94 1,190.22 285.63 16.05 200.81 2,092.47 20,719.91
CPU 51.53 1,261.56 200,216.28 1,470.10 280.31 17.14 156.49 1,922.02 20,719.85
CPU 44.84 1,242.82 194,000.47 1,972.64 248.34 16.89 205.72 2,448.71 20,727.23
CPU 50.65 1,210.58 182,236.14 1,385.07 251.20 16.96 215.06 2,038.71 20,719.54
CPU 44.97 1,042.85 185,988.31 1,826.44 285.23 16.57 210.41 2,153.19 20,723.66
GPU 43.39 855.83 118,060.55 1,063.94 189.29 15.43 156.66 1,188.65 20,704.46
GPU 45.56 725.88 141,413.03 1,092.53 231.59 14.71 159.39 1,249.47 20,707.90
GPU 45.01 967.91 131,710.67 730.03 205.58 15.26 95.35 727.81 20,714.68
GPU 36.17 845.70 134,990.25 1,338.93 205.13 15.05 143.00 1,039.97 20,709.13
GPU ,43.27 939.87 129,875.73 972.40 192.81 15.21 154.22 962.32 20,702.36
GPU 34.54 821.64 111,364.34 1,299.02 242.38 15.21 167.35 904.35 20,708.38
GPU 42.41 782.17 133,603.25 1,074.08 211.55 15.45 135.07 1,211.44 20,710.81
GPU 42.46 739.65 108,214.88 1,248.61 222.93 15.59 133.56 1,332.69 20,716.58
GPU 54.16 912.20 103,114.16 1,077.81 227.66 15.91 170.80 1,028.79 20,706.01
GPU 37.96 871.04 114,409.24 1,021.06 237.07 15.30 124.51 1,232.94 20,705.02
GPU 28.51 860.33 130,606.30 1,206.30 207.38 15.42 126.97 742.96 20,710.50
GPU 37.52 916.54 137,729.39 1,190.32 236.03 15.73 128.43 1,276.49 20,707.72
GPU 33.99 936.44 145,870.27 1,209.92 220.32 15.56 156.92 925.97 20,706.60
GPU 38.63 804.80 121,314.86 1,177.88 225.26 14.82 147.35 1,715.38 20,704.36
GPU 39.50 645.15 127,713.55 1,133.51 230.44 15.76 136.74 1,054.60 20,707.92
GPU 45.26 727.07 104,419.79 1,066.93 254.98 14.72 159.17 1,357.28 20,710.06
GPU 43.49 844.17 155,562.56 914.05 228.61 14.74 180.26 1,749.65 20,703.45
GPU 41.12 809.00 117,463.82 1,139.54 210.75 15.54 162.61 1,450.71 20,711.72
GPU 44.30 635.64 111,732.80 1,024.59 207.29 15.58 139.15 1,406.60 20,708.95
GPU 43.08 762.64 170,929.52 1,096.76 225.29 14.80 129.73 1,067.60 20,704.33
Abbreviations: CPU: Central processing unit; GPU: Graphics processing unit.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X


DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

42

Table A2. Output data of the speedup test for compute unified device architecture‑simplified swarm optimization
Type Particle size 100 200 300 350
CPU 1 49.063 191.183 437.161 564.453
CPU 2 49.073 189.712 439.999 562.614
CPU 3 48.418 190.58 440.908 565.67
CPU 4 47.88 192.824 437.476 563.651
CPU 5 47.758 192.861 428.533 563.799
CPU 6 48.389 191.056 434.753 565.119
CPU 7 49.176 188.301 434.557 571.929
CPU 8 48.248 190.205 431.854 575.904
CPU 9 48.212 189.323 435.387 568.348
CPU 10 50.346 189.678 432.782 582.892
CPU 11 49.061 192.337 432.366 583.594
CPU 12 49.662 194.05 427.215 607.547
CPU 13 49.306 195.631 429.057 601.964
CPU 14 49.547 192.663 433.167 598.993
CPU 15 48.484 197.172 435.056 599.659
CPU 16 48.968 196.5 432.65 598.553
CPU 17 48.827 195.68 439.168 604.617
CPU 18 48.903 197.722 436.881 591.776
CPU 19 47.779 196.185 439.258 594.146
CPU 20 49.426 198.394 438.808 589.143

Average 48.8263 193.10285 434.8518 582.71855
GPU 1 0.15 0.166 0.18 0.19
GPU 2 0.139 0.152 0.174 0.167
GPU 3 0.139 0.144 0.162 0.166
GPU 4 0.138 0.144 0.169 0.174
GPU 5 0.138 0.142 0.156 0.161
GPU 6 0.139 0.143 0.167 0.172
GPU 7 0.141 0.148 0.157 0.16
GPU 8 0.136 0.154 0.16 0.169
GPU 9 0.137 0.159 0.161 0.17
GPU 10 0.136 0.146 0.166 0.165
GPU 11 0.137 0.173 0.166 0.165
GPU 12 0.136 0.168 0.162 0.172
GPU 13 0.137 0.153 0.163 0.169
GPU 14 0.143 0.152 0.162 0.177
GPU 15 0.144 0.151 0.166 0.161
GPU 16 0.135 0.16 0.165 0.177
GPU 17 0.14 0.168 0.165 0.169
GPU 18 0.135 0.158 0.158 0.166
GPU 19 0.134 0.15 0.158 0.17
GPU 20 0.141 0.149 0.159 0.17
Average 0.13875 0.154 0.1638 0.1695
Abbreviations: CPU: Central processing unit; GPU: Graphics processing unit.
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