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Abstract

In recent years, location-based social networks (LBSNs) have gained significant popularity, enabling users to 
interact with points of interest (POIs) using modern technologies. As more people rely on LBSNs for finding 
interesting venues, contextually aware and relevant recommendation systems have become very beneficial 
with practical applications. In this research, we propose an enhanced hybrid recommendation system, designed 
for LBSNs to improve the accuracy of suggestions by integrating collaborative filtering methods with singular 
value decomposition to handle sparse data, along with context-aware modeling to tailor recommendations based 
on user interests, and group recommendation to accommodate multi-user scenarios. In addition, we incorporate 
contextual aspects, such as spatial proximity and temporal behavior, into the model to ensure recommendations 
align closely with the user’s present surroundings and preferences. The proposed method extends further to 
group recommendations by considering individual inclinations into cohesive suggestions for groups interested in 
visiting POIs together. The proposed method is assessed using precision, recall, and F1 score, ensuring a thorough 
evaluation of its performance. To further highlight context-aware recommendations, we use clustering based on 
user preference, temporal behavior, and category-wise interaction to identify patterns across various venue types. 
The proposed method shows improved recommendations, specifically based on data from LBSNs, and develops an 
efficient solution for balanced user preferences with contextual influences.

Keywords: Collaborative Filtering, Context-Aware Recommendations, Data Sparsity, Group Recommendation, 
Hybrid Recommendation System, Location-Based Social Networks, Singular Value Decomposition

1. Introduction

Location-based social networks (LBSNs) have 
become an integral part of daily life, largely due to the 
widespread use of smartphones and global positioning 
technology. Platforms such as Weibo, Gowalla, 
Foursquare, Yelp, and Google Maps allow users to 
share their locations, check in at various places, and 
connect with friends. These networks not only track 
a user’s movements but also create a dynamic system 
in which individuals interact with their physical 
environment and social networks in meaningful ways 
(Barai & Bhaumik, 2015). An opportunity and the big 
challenge are developing recommendations that are 

more relevant by suggesting points of interest (POIs) 
– places the user might like based on where they have 
been, who they know, and what activities the users 
enjoy frequently – with the help of methods such as 
content-based filtering and collaborative filtering (CF) 
traditional recommendation systems, such as those 
used by Netflix or Amazon, are effective in domains 
including movies and product recommendations due 
to well-established preference patterns. However, such 
models are not directly suitable for LBSNs, which 
involve more nuanced spatial, social, and temporal 
dynamics (Ezin, 2024). However, these methods 
cannot be implemented directly when it comes to 
location-based recommendations, which involve 
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more complicated factors such as location, social, or 
temporal aspects related to the users’ check-ins. When 
recommending a venue, systems now consider much 
more than just general past preferences; factors such 
as physical proximity and typical visitation times for 
similar venues are taken into consideration. It is a much 
more nuanced approach to helping people discover 
interesting places nearby. These approaches represent 
a significant shift in how technology understands 
and anticipates our daily experiences, transforming 
simple check-in data into sophisticated, personalized 
recommendation models.

1.1. Challenges in LBSN Recommendations
One of the significant challenges in LBSN 

recommendation systems is the critical influence of 
user proximity to other users in the physical world 
(Dutta et al., 2025). Unlike previous recommendation 
systems that focused on item features such as type, 
price, or characteristics, LBSN users tend to frequent 
POIs located near their current location (Sánchez 
& Bellogín, 2022). Location plays a pivotal role in 
generating meaningful recommendations. Previous 
research has demonstrated that individuals typically 
travel from their current location before heading to 
the recommended venue, underscoring the importance 
of spatial data in recommendation algorithms. 
A recommendation system might suggest appealing 
places, but its utility diminishes if it fails to consider 
geographical distance (Dietz et al., 2025). Beyond 
geographical considerations, temporal parameters 
are equally crucial in understanding user decision-
making. Individuals’ preferences vary throughout the 
day and week. For example, the users might seek cafés 
in the morning, restaurants in the evening, or parks 
on weekends. Therefore, LBSN recommendations 
must incorporate time-based factors that reflect users’ 
behavioral patterns during specific periods (Zhang 
et al., 2019). These temporal elements are not merely 
supplementary but fundamental to recommendation 
accuracy. Ignoring time-related context can result 
in inappropriate suggestions that feel disconnected 
from users’ actual behavioral patterns, fundamentally 
compromising the system’s functionality and relevance 
(Redondo et al., 2020; Zheng & Zhou, 2024). The 
major challenge lies in developing recommendation 
systems that can integrate spatial and temporal 
dimensions, providing suggestions that are not just 
potentially interesting but practically accessible within 
a user’s context.

However, user preferences and social 
factors present additional complexities in LBSN 
recommendation systems. Empirical research 
demonstrates that individual historical behaviors, 
such as previous check-ins, repeated visits, and 

consistent location choices, significantly influence 
preferred visiting venues (Teoman, 2022; Wachyuni 
& Kusumaningrum, 2020). Past preference patterns 
dramatically shape venue selections. Users with a 
history of social interactions tend to gravitate toward 
vibrant, interactive venues, such as bars and festivals. 
On the other hand, those with more solitary past 
behaviors prefer more contemplative spaces, such 
as libraries and parks. Location-based data provides 
significant opportunities to enhance recommendation 
accuracy by integrating contextual factors, including 
user location, temporal variables, and local events. 
Individual preferences can vary substantially between 
travel and home environments, with local conditions 
and events further modulating decision-making 
patterns. The use of this contextual information becomes 
crucial in creating more accurate recommendations. 
By combining these factors, recommendation systems 
can generate suggestions that are aligned with users’ 
circumstances and past preferences. The fundamental 
challenge lies in developing recommendation systems 
that can analyze and model the relationship between 
users’ past behaviors, spatial context, and temporal 
dynamics (Wang et al., 2024).

1.2. Hybrid Recommendation Systems For LBSNs
The complex nature of user preferences in LBSNs 

makes it crucial to explore hybrid recommendation 
systems to get more relevant suggestions. In rapidly 
changing environments like LBSNs, hybrid systems 
can effectively address the limitations of individual 
methods by combining the strengths of various 
recommendation approaches, ultimately providing 
more accurate recommendations. Most conventional 
recommendation approaches, such as CF, are typically 
designed to predict a specific user’s preference based 
on their past activities. However, these traditional 
methods often fall short in capturing the complex 
nature of user interactions within the location-based 
systems. Hybrid recommendation systems offer a 
more comprehensive solution by integrating multiple 
recommendation techniques, allowing for a more 
nuanced and adaptable approach to understanding user 
preferences. By integrating different methodological 
strategies, these systems can provide more robust and 
context-aware recommendations that better reflect 
the multilayered user behavior in LBSNs (Eliyas & 
Ranjana, 2022). There are two main types of memory-
based CF approaches (Teoman, 2022): User-based 
CF, which recommends POIs based on preferences of 
similar users, and item-based CF, which suggests POIs 
similar to those the user has previously visited. Despite 
their effectiveness, individual methods often struggle 
with data sparsity and lack contextual adaptability, 
both of which are critical for LBSNs. Given the 
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complex nature of user preferences in LBSNs, 
hybrid recommendation systems have emerged as 
a promising solution, integrating CF with singular 
value decomposition (SVD) and context-aware 
techniques to offer more accurate and personalized 
recommendations. In this study, we propose a 
contextual hybrid recommendation strategy that 
integrates user preferences, geographical location, and 
temporal behavior factors with CF and SVD matrix 
factorization to address the unique challenges of 
LBSNs. Using standard performance metrics, such as 
precision, recall, and F1 score, we assess the quality of 
the proposed system’s recommendations. This serves 
as a powerful dimensionality reduction technique that 
enables the identification of hidden patterns within 
user-item interaction data that might otherwise remain 
imperceptible (Wachyuni & Kusumaningrum, 2020). 
While SVD improves recommendation quality and 
addresses data sparsity issues, it does not consider 
contexts, such as spatial or temporal factors, that are 
essential in LBSN recommendation systems.

Key contributions to this research:
(i) This research introduces a novel hybrid 

recommendation framework that integrates user-
based, item-based CF with SVD, and context-
aware user modeling. This combination is 
specifically designed to address and mitigate the 
limitations found in traditional recommendation 
approaches within LBSNs, enabling more 
accurate and context-sensitive recommendation 
strategies.

(ii) By incorporating factors such as spatial proximity 
and temporal behaviors, our framework enhances 
the personalization of recommendations. 
This integration allows for recommendations 
that adapt to varying user contexts, aligning 
suggestions with location-based and temporal 
dimensions to closely reflect diverse user 
needs and preferences, accumulating to group 
recommendations.

(iii) Through extensive experimentation with 
standard evaluation metrics (precision, recall, 
F1 score, and accuracy), we demonstrate that the 
proposed hybrid model outperforms traditional 
methods. This thorough assessment highlights 
the framework’s potential to maintain high 
recommendation quality and accuracy in data-
sparse and dynamic environments, marking a 
significant improvement over the conventional 
method in LBSN settings.

The next section of this paper presents a 
review of the relevant literature, followed by 
Section 3, which describes the material and methods, 
including the detailed steps in the architecture of the 

proposed system. Section 4 provides the results and 
comparisons, followed by the conclusion and potential 
future directions.

2. Related Work
The research on efficient recommendation 

engines is becoming increasingly important as LBSNs 
emerge as a primary platform for real-world user 
interactions. LBSNs present unique recommendation 
challenges by integrating contextual factors such 
as user location, check-in timing, and personal 
preferences, extending beyond traditional user-
item interaction models. The CF approaches are 
widely used in most recommender systems, excel at 
generating similar-based recommendations tailored 
to user behaviors (Papadakis et al., 2022). However, 
the contextual aspects inherent in LBSNs, when the 
user preferences dynamically shift with location and 
time, present significant limitations for traditional CF 
techniques. The complexity of LBSNs has motivated 
research into integrating contextual information to 
enhance recommendation accuracy and relevance 
(Mahajan & Kaur, 2023). While CF techniques have 
been successfully applied across domains, including 
media streaming and e-commerce (Hu et al., 2019), 
their direct application to location-based networks 
remains challenging. Matrix factorization methods, 
including SVD, have improved CF effectiveness by 
reducing user-item interaction matrix dimensionality 
and uncovering hidden factors. Nevertheless, the data 
sparsity problem in LBSNs, where users visit few 
POIs, creates substantial gaps in interaction matrices 
(Tourinho & Rios, 2021). These constraints highlight 
the need to develop innovative recommendation 
methodologies that can effectively capture real-
world contextual features and manage sparse data 
environments.

To address the limitations of conventional 
CF for large-scale social networks, context-aware 
recommendation systems have been proposed in a 
previous study (Ezin, 2024). These systems integrate 
external contextual factors, such as user time and 
location, into recommendation mechanisms. LBSN 
users typically prefer locations spatially closer to 
their current position, making geo-influence a critical 
system component. As demonstrated by Yuan & 
Chen (2017), users visit different places at varying 
times, establishing temporal factors as essential 
in LBSN recommendations. Some studies have 
expanded contextual considerations beyond spatial 
and temporal parameters. For example, individual 
personality differences significantly impact location 
preferences: Extroverted individuals might seek active 
environments, while introverted users prefer calmer 
settings (Deldjoo et al., 2020). For instance, people 
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with different personality traits, such as extroverted 
individuals, typically prefer vibrant environments, 
while introverted people seek serene settings. 
Previous studies by Hossein (2018) and Arabi (2018) 
discuss that integrating personality traits can enhance 
recommendation targeting, potentially improving 
overall user satisfaction in LBSNs. While exploring 
recommendations for LBSN, considering factors such 
as proximity might enhance user satisfaction.

LBSN research demonstrates that social 
connections are a valuable source of information for 
improving recommendation quality. Social network 
analysis, as discussed by Wang et al. (2019), can be 
integrated into LBSNs to leverage user relationships, 
particularly in scenarios with limited user-item 
interaction data. Wang et al. (2019) suggested that 
users’ preferences are significantly influenced by 
their social circles, friends, coworkers, and contacts, 
which can inform and shape location choices. Social 
trust-based models, introduced by Kanfade et al. 
(2018) and Bhaumik (2016), extend traditional CF by 
incorporating trust scores between users, enabling more 
nuanced preference generalization. Wang et al. (2013) 
proposed a circle-based recommendation system that 
generates suggestions by grouping friends into distinct 
circles, focusing on preferences within these social 
networks. Recent developments in recommender 
systems increasingly recognize that multiple factors 
beyond traditional user-item interactions shape 
user preferences in LBSNs. Recently, decision-
making in these systems incorporates multi-criteria 
considerations, such as cost, ambiance, accessibility, 
and user reviews. Multi-criteria rating systems enable 
more complex, detailed recommendations compared 
to traditional CF techniques (Dadoun et al., 2019). 
Unlike the conventional CF approach by Nian (2021), 
multi-criteria CF (Davtalab & Alesheikh, 2023) 
extracts multiple dimensions of user preferences to 
capture the trade-offs users consider when selecting 
locations. In LBSNs, this approach allows users to 
prioritize criteria such as distance, reflecting the nature 
of location-based decision-making.

Traditional CF methods do not consider handling 
contextual features, leading to the development of 
hybrid recommendation approaches that combine 
multiple strategies to enhance overall performance 
(Zheng, 2022). These hybrid systems integrate 
advantages from CF, context-aware modules, and 
content-based strategies to mitigate limitations 
in individual methods. CF and context-aware 
approaches, including SVD, are frequently used 
to capture complex interactions between users and 
items. This approach is especially vital in LBSNs 
where user-item interactions are typically sparse and 
latent factors can mask user-POI relationships (Sun 
et al., 2022). The increasing trend of collaborative 

destination planning has shifted focus from individual 
to group recommendation systems (Zhao et al., 2023). 
Group recommendation systems face the complex 
challenge of satisfying multiple users’ preferences, 
often complicated by conflicting individual desires. 
Various grouping methods have emerged to address 
these challenges, including social preference analysis 
and voting processes. These aggregation techniques 
aim to compute group-level recommendations while 
carefully balancing individual preferences (Zhou 
et al., 2024). By incorporating contextual and social 
aspects, group recommendation algorithms become 
more sophisticated in suggesting relevant choices for a 
group along with various venue categories.

The advancement in hybrid systems that 
integrate CF and social trust modeling has enhanced 
personalization that is hindered by the limitations of 
traditional CF in handling sparse data and contextual 
factors, such as time and location in LBSNs. However, 
hybrid systems still face challenges in combining 
contextual and social dimensions, especially for 
group recommendations. In line with these findings, 
it is necessary to propose a hybrid recommendation 
framework that not only leverages CF and SVD for 
handling data sparsity but also integrates contextual 
factors, including time and location. In addition, the 
inclusion of group recommendation methods ensures 
that our system can balance individual preferences 
in multi-user scenarios, offering a scalable and 
contextually adaptive solution for LBSNs.

3. Research Methodology
This section presents the methodology 

and framework for designing the LBSN group 
recommendation system. The framework in Fig. 1 
represents the proposed hybrid approach designed 
to generate highly personalized and contextually 
relevant recommendations in LBSNs. To demonstrate 
the effectiveness of the model, we used the user 
check-in data from an LBSN named Gowalla (Zhou 
et al., 2024). The user-influence modeling component 
built a detailed profile for each user by analyzing key 
factors that contribute to a long-term understanding 
of user preferences. Parallelly, CF was employed, 
encompassing user-based CF, item-based CF, and 
SVD. This combination allowed the framework 
to uncover hidden relationships within user-item 
interactions, making it particularly effective in sparse 
data environments. In addition, the context-aware 
module dynamically adjusts recommendations based 
on the user’s immediate context, including their 
current location and time, ensuring relevance.

Once the system had gathered insights from 
user influence modeling, CF, and context-aware 
modules, it combined these in the recommendation 
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engine to generate a final set of recommendations 
tailored to the individual. For group scenarios, the 
group recommendation module compiled individual 
preference scores to provide unified recommendations 
that met the collective needs of multiple users, 
balancing diverse tastes within the group. Finally, 
the evaluation component measured the system’s 
performance using metrics, such as precision and 
recall, along with analyses based on user preferences, 
temporal behaviors, and category-specific interactions. 
Together, these components formed a robust, scalable 
recommendation system that effectively balanced long-
term personalization with adaptive, recommendation 
contextual adjustments, resulting in recommendations 
that were both accurate and highly relevant to the 
user’s preferences.

3.1. Hybrid Recommendation System For LBSN
The hybrid recommendation system integrates 

multiple recommendation techniques to provide 
highly personalized and contextually relevant 
recommendations for LBSNs. The dataflow diagram 
in Fig. 2 shows the steps to achieve this goal. The first 
step involved preprocessing the user-item interaction 
matrix and extracting contextual information of the user, 
such as geographical location and temporal behavior. 
These contextual factors were key to understanding the 
user’s preferences more comprehensively. CF methods 
were applied to predict scores for POIs, as shown in 
Eq. (1). We computed the final recommendation score 
for each user-item pair by integrating user-based CF, 
item-based CF, and SVD using a weighted sum, as 
follows:

Ffinal = w1∙Fup + w2∙Fip + w3∙Fsvd (1)

where Ffinal: final predicted score, Fup: user-based 
CF score, Fip: item-based CF score, Fsvd: score from 
SVD, and w1, w1, w1: weights for each method.

In our hybrid approach, the weights assigned to 
each component method (user-based CF, item-based 
CF, and SVD) were initially set based on empirical 
tuning, with equal or proportional to the assigned 
values derived from preliminary experiments. This 
initialization provided a balanced integration of the 
three methods, ensuring that the system did not overly 
depend on any single approach in the beginning. 
However, to adapt to our datasets, the weights were 
fine-tuned during training, considering characteristics 
such as data sparsity and interaction density. This 
weighting approach demonstrated the potential to 
improve recommendation accuracy by enabling 
the system to respond to various user behaviors and 
contexts.

User-based CF searched for similar users 
to the target user and utilized their preferences to 
generate recommendations, while the item-based CF 
searched for items that the user had interacted with. 
The SVD was used to uncover latent relationships 
between users and items, helping in cases where the 
data were sparse. The Fig. 2 incorporates contextual 
information to adjust the recommendations, making 
them more relevant based on the user’s preferences. 
The final scores were calculated by combining the 
scores from user-based CF, item-based CF, SVD, and 
context-aware modeling, using weighted averages. 
If the recommendation was intended for a group, the 
preferences of all group members were aggregated, and 
the final scores were adjusted accordingly. This ensured 
that the recommendations satisfied the entire group’s 
preferences. Finally, the POIs were ranked based on 
the adjusted scores, and the top recommendations were 

Fig. 1. Proposed framework of LBSN group recommendation system



DOI: 10.6977/IJoSI.202508_9(4).0008
N. U. Khan, R. Riaz, etc./Int. J. Systematic Innovation, 9(4), 106-122 (2025)

111

computed. Fig. 2 illustrates the process of generating 
personalized and group recommendations in LBSN. 
The process integrated user check-in data, CF (user-
based and item-based), context-aware module SVD, 
and context-aware modeling (spatial proximity and 
temporal behavior) to produce highly accurate and 
tailored recommendations for both individuals and 
groups.

3.2. Overview of the Dataset
To show the effectiveness of the proposed 

method, we utilized the Gowalla dataset (Cho et al., 
2011), which contains detailed check-in information 
of the users of the LBSN. Gowalla is a location-
based service where users share their activities with 
friends by checking in at various POIs in the real 
world. The dataset includes check-in records from 
users across the globe, enabling a rich context for 
studying user mobility, spatial influences, and location 
recommendations, as shown in Table 1.

The dataset used in this study included 196,591 
users, each identified with a unique user ID. Users in the 
dataset interacted with different locations by checking 
in at various POIs. User check-ins were timestamped, 
which allowed for the analysis of temporal behavior 
in conjunction with spatial movement patterns. There 
were 6,442,892 check-ins at 1,280,969 different 
POIs in the dataset. Each POI was associated with 
geographical coordinates (latitude and longitude) and 
represented a real-world location such as a restaurant, 
park, or other venue. The dataset consisted of over 
6.4 million check-ins. This social network structure 
enables the modeling of user behavior based on social 

influence and peer interactions, which is valuable for 
group and social-aware recommendation systems.

3.3. Data Preprocessing

Before conducting the analysis, several 
preprocessing steps were undertaken to ensure the 
quality and consistency of the data. First, the spatial 
data, including the latitude and longitude information 
for POIs, was normalized to standardize distance 
calculations and enable accurate spatial proximity 
analysis. Temporal information, specifically the 
timestamps for each check-in, was converted into 

Fig. 2. Dataflow diagram of the proposed method to achieve the hybrid recommendation system 
Abbreviations: CF: Collaborative filtering; LBSN: Location-based social networks; POI: Point of 

interest; SVD: Singular value decomposition

Table 1. Overview of the dataset
Attribute Description
Number of 
users

A total of 196,591 users with unique user 
IDs. Each user has a record of check-ins 
at various POIs.

Number of 
POIs

A total of 1,280,969 POIs with 
geographical coordinates (latitude and 
longitude).

Total 
check-ins

A total of 6,442,892 check-ins where 
users interacted with different POIs.

Geographical 
data

Latitude and longitude for each POI, 
which allow calculation of spatial 
proximity for the recommendation 
model.

Temporal 
information

Timestamps for each check-in that allow 
analysis of user behavior over time.

Categories of 
POIs

Food, entertainment, professional, 
shopping, etc.

Abbreviation: POI: Point of interest.
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standard date-time formats to facilitate the study of 
temporal patterns, such as user check-ins at different 
times of the day or week. To maintain data integrity 
and ensure the focus remained on active users and 
their mobility patterns, users who exhibited very low 
levels of activity were excluded from the dataset. The 
dataset used for this study included 196,591 users and 
1,280,969 unique POIs, with a total of 6,442,892 check-
ins. Although the dataset did not explicitly categorize 
POIs, they were grouped into various categories based 
on their nature and purpose. These categories included 
food (e.g., restaurants, cafés, and fast-food outlets), 
travel (e.g., parks and tourist spots), entertainment 
(e.g., concert halls, theatres, and cinema), professional 
(e.g., banks and offices), shopping and services (e.g., 
malls and retail stores), educational (e.g., schools, 
universities), hotels, residential (e.g., apartments), 
and sports. These groupings provided a clear 
understanding of user preferences and behaviors in 
different locations. Each attribute in the LBSN dataset 
indicated the interaction frequency between a specific 
user and a POI. After preprocessing, the user-POI 
interaction matrix, R, was constructed with Eq. (2), 
where each entry Ru,i represents an interaction between 
a user (u) and a POI (i) with binary values indicating 
whether an interaction exists (1) or not (0), while m 
and n represent the number of users and the number of 
items (POIs), respectively.

R
R R R
R R R

R R R

n

n

m m m n
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…
…






















11 11 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

  



 (2)

The system was initialized by acquiring user 
check-in data from LBSNs. This data captured user 
interactions with various POIs, including restaurants, 
parks, and cafés. Each check-in record typically 
contained location coordinates, timestamp, and 
supplementary user demographic or behavioral data. 
These historical interactions formed the cornerstone 
of our recommendation process, revealing patterns 
in user preferences, frequently visited locations, and 
peak activity periods. Through systematic analysis 
of this data, the system uncovered underlying user 
preferences and their affinities for specific POIs.

3.4. User Influence Modeling
The next stage was user influence modeling, 

where our recommendation system improved user 
influence modeling by incorporating contextual factors 
that enhanced recommendation relevance. While 
traditional systems primarily analyzed user-item 

interactions, LBSNs required consideration of external 
influences. The framework evaluated spatial proximity, 
acknowledging that users typically preferred venues 
near their current location. It also accounted for 
temporal patterns, recognizing that preferences shifted 
throughout the day, such as favoring coffee shops in 
morning hours and restaurants in the evening. By 
integrating these contextual factors, we personalized 
recommendations based on two key influences: spatial 
proximity and temporal behavior patterns.

In LBSNs, physical proximity significantly 
influenced user preferences, with users typically 
favoring recommendations for nearby POIs. We 
evaluated the distance between users and POIs as a 
key factor in our recommendation system, recognizing 
that users closer to specific locations were more 
likely to interact with them and provided relevant 
recommendations. To quantify spatial relationships, 
we calculated each user’s distance from the group’s 
centroid location using latitude and longitude 
coordinates. This spatial proximity measurement 
employed the Haversine formula (Wirastuti et al., 
2023), as expressed in Eq. (3).

d(u,group) = Haversine(latu|, lonu|, latmean|, lonmean|) (3)

where: latu and lonu represent the latitude and 
longitude of the user u, while latmean and lonmean centroid 
the coordinates of the group.

Temporal patterns significantly influenced 
human behavior, with distinct location preferences 
emerging during work hours versus leisure time. Our 
recommendation system analyzed these temporal 
patterns by tracking when users typically interacted 
with various POIs. The system assigned higher 
priority to locations where a user’s preferred check-in 
times aligned with peak activity periods. To quantify 
this temporal relationship, we evaluated the time 
differential between individual check-in patterns and 
group user behavior using Eq. (4).

Δt(u,group) = ∣tu|−tgroup_mean∣ (4)

We calculated user influence scores by 
analyzing interactions across location, time, and 
behavioral patterns. This scoring enabled us to 
prioritize recommendations that aligned with each 
user’s preferences and behavioral patterns. Our 
recommendation accuracy relied on three key 
dimensions: geographic proximity, temporal activity 
patterns, and individual behavioral characteristics.

3.5. CF
CF techniques integrated user-item interaction 

data with sophisticated user influence factors. The 
basic idea of user-based CF centered on identifying 
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users with statistically significant similarities in 
their spatial interaction patterns, particularly those 
demonstrating consistent check-in behaviors across 
comparable venues. The user-based CF recommended 
POIs that were frequently visited by users with similar 
traits, but remained unexplored by the target user. On 
the other hand, the item-based approach suggested 
POIs that exhibited substantial similarity to locations 
previously visited by the user, effectively extending the 
user’s existing interaction profile. For example, when 
a user consistently visited specific types of restaurants, 
the model identified and recommended similar venues 
across diverse spatial contexts. This approach enabled 
the recommendation system to determine behavioral 
patterns, generating contextually refined and relevant 
recommendations as formalized in Eq. (5).

( ) ( )( )

( ) ( )
ˆ

,

,
∈

∈

−
= +

∑
∑

vi vv N u
ui u

v N u

sim u v r r
r r

sim u v
 (5)

where: ûir  is the predicted rating for the user u on 
item i, sim (u,v) is the similarity between users u and 
v, ru and rv are their average ratings, and N(u) is the set 
of similar users.

The user-based CF approach leveraged behavioral 
similarities, predicting future preferences based on the 
users’ historical interaction patterns. The identified 
user partners were characterized by significant 
behavioral similarities, particularly in spatio-temporal 
POI engagement. By analyzing the patterns of user 
check-in behaviors, the recommendation system 
identified the relational pattern that captured the 
interactions between users and venues. It involved 
identifying users with highly correlated interactions 
and subsequently utilizing their POI preferences 
to generate targeted recommendations for the user. 
This approach effectively transformed the collective 
user experience into a predictive recommendation 
mechanism. The user-based CF calculated user 
similarity by analyzing their interaction patterns with 
items (POIs), as shown in Eq. (6).

. ,_ ( )
( )ˆ ,

∈
= ⋅∑u i v iv similar users u

R Sim u v R  (6)

where: .
ˆ
u iR  represents the predicted score of 

interactions between user u and item i.
The item-based CF approach varied from 

traditional user-based methods by focusing on 
inter-item (venues) similarity relationships. This 
recommendation strategy, which operated mainly on 
spatial proximity and contextual similarity between 
venues, could effectively predict user preferences. By 
analyzing the characteristics and interaction patterns 
associated with specific locations, item-based CF 

could generate recommendations based on the inherent 
similarities between POIs. Consider a scenario 
where a user showed a distinct preference for coffee 
shops. The item-based CF systematically identified 
and recommended alternative venues that exhibited 
significant similarities. The similarity of two venues 
i and j, as well as the correlation between users who 
had interacted with both items, were measured using 
cosine, as expressed in Eq. (7). The predicted score for 
venue i is determined as in Eq. (8).
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|

,
||  || |  || . |

⋅
= i j

i j

R R
Sim i j

R R
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,  ,_ ( )
( )ˆ ,

∈
= ⋅∑u i u jj similar items i

R Sim i j R  (8)

The SVD served as a dimensionality reduction 
technique that effectively uncovered latent patterns 
and intricate relationships between users and items, 
particularly in large-scale datasets characterized by 
sparse user-item interaction matrices. This approach 
enabled the identification of underlying semantic factors 
that analyzed the check-in data, revealing features that 
significantly influenced user preferences. In the context 
of LBSNs, these latent factors involve attributes such 
as venue type (e.g., restaurant or park) and contextual 
environment (e.g., casual or formal). By extracting 
these hidden patterns, the recommendation system 
could generate highly contextualized suggestions even 
in scenarios with limited direct user-item interaction 
data. The SVD demonstrated outstanding efficacy in 
enhancing recommendation accuracy by discerning 
sensitive, non-obvious patterns that remained hidden 
through conventional analysis. This was achieved 
by decomposing the user-item interaction matrix R, 
thereby revealing latent structures. The reconstruction 
of the user-item matrix, as shown in Eq. (9), facilitated 
precise predictive recommendations by synthesizing 
these extracted characteristics.

ˆ = Σ TR U V  (9)

The top-N recommendations were based on the 
predicted score with the highest values in R̂  calculated 
as in Eq. (10).

1 2 3.  .  | .ˆ ˆ ˆ . ˆ|λ λ λ=Hybrid UB IB SVDR R R R  (10)

where ˆUBR  is the user-based CF’s predicted 
scores, ˆ IBR  represents the item-based CF’s predicted 
scores, and ˆ SVD  from SVD. The combined score is 
a weighted sum for the hybrid approach, where λ1, λ2, 
and λ3 represents the weights of each method. This 
score was then combined with the contextual feature 
to get the final recommendation score.
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3.6. Group Recommendation
In a hybrid recommendation engine, the system 

employs group recommendation methodology to 
integrate individual preferences into a cohesive 
collective recommendation. This process combined 
individual user preferences to identify a set of 
POIs that suitably satisfied the collective group’s 
preferences. The group recommendation mechanism 
leveraged well-known techniques from social choice 
theory and the collaborative voting method to join and 
integrate different user preferences. By employing this 
approach, the model could strategically recommend 
venues that demonstrated the highest probability of 
collective appeal based on a comprehensive analysis 
of individual user profiles, historical patterns, and 
collective preferences. For each user in the group, the 
system computed preferences using CF, SVD, and 
context-aware modeling (spatial and temporal). Then, 
individual preferences were gathered into a group 
recommendation using voting techniques. A method 
for gathering preferences could be represented in 
Eq. (11).

P w Pgroup ii

n
i=

=∑ 1
  (11)

where: Pgroup is the final group recommendation 
score, Pi is the recommendation score for individual 
user i based on their preferences, wi is the weight 
assigned to each user’s preferences, and n is the number 
of users in the group. The system then recommended 
items (POIs) that maximize Pgroup, considering each 
member’s preferences and grouping them into a 
unified group decision.

3.7. User Behavior Analysis
In developing a comprehensive recommendation 

system, understanding user interaction patterns played 
a critical role. The system implemented three analytical 
components: clustering based on user preferences, 
temporal behavior analysis, and category-wise 
interaction analysis, each contributing to improved 
recommendation accuracy and personalization.

3.7.1. User Preferences
We employ K-means clustering due to its 

scalability and efficiency for partitioning users based 
on preference features. The number of clusters 
(k = 3) was selected empirically to balance between 
underfitting and over-segmentation. This step 
influenced clustering techniques, that is, K-means, 
to segment users based on their preferences and 
interaction behaviors. By grouping users with similar 
location preferences, the recommendation system can 

generate tailored suggestions that are more aligned 
with each user’s interests. The clustering process often 
incorporates distance measures such as Euclidean or 
Cosine similarity to assess the proximity between 
users in terms of their preferences.

3.7.2. Temporal Behavior Analysis
This component analyzed the influence of time 

on user behavior, examining when users were most 
likely to interact with certain categories of locations 
(e.g., restaurants during lunch hours or entertainment 
venues in the evening). Temporal patterns helped the 
system to adjust recommendations based on the time 
of day or week. In LBSN research, the day was often 
divided into four distinct time segments: morning 
(5:00 A.M. – 11:59 A.M.), afternoon (12:00 P.M. – 
5:59 P.M.), evening (6:00 P.M. – 8:59 P.M.), and night 
(9:00 P.M. – 4:59 A.M.), which reflected natural human 
activity patterns and aligned with previous studies on 
temporal behavior in location-based services (Choe 
et al., 2023). The analysis often involved temporal data 
partitioning, which was then visualized and measured 
to capture significant behavior patterns, typically using 
normalized interaction rates over defined periods.

This analysis focused on the categories of 
locations that users interacted with most frequently, 
providing insights into which types of venues held the 
most appeal for different user clusters. By computing 
metrics such as mean, median, and standard deviation 
of interactions within each category, the system 
could discern variations in user engagement across 
different categories, allowing more significant 
recommendations. To model these behaviors, equations 
were integrated to represent similar measures and 
interaction probabilities. For instance, the relationship 
between users i and j could be calculated as in Eq. (12).
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| 2 2
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×

∑
∑ ∑

i j
ij

i j

u u
Similarity

u u
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where ui and uj are the interaction vectors for 
users i and j, respectively.

In addition, temporal interaction rates could be 
computed to normalize engagement across different 
time intervals. Each of these components contributed 
to a robust recommendation framework by capturing 
diverse dimensions of user behavior, thereby 
enhancing the relevance and personalization of the 
recommendations.

3.8. Evaluation
The evaluation stage of the research evaluated 

the system’s efficiency and effectiveness through 
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comprehensive performance metrics. These 
overlapping performance indicators, including 
precision, recall, F1 score, and accuracy, provided a 
multidimensional assessment of the recommendation 
system’s ability to align recommended POIs with user 
preferences. The precision quantified the performance 
of recommended POIs calculated as the ratio of true 
positives (TP) to the total number of recommendations 
(TP + false positives [FP]), addressing the critical 
research question: “Of all system recommendations, 
what percentage accurately matches user preferences?” 
A high precision score indicated the system’s capability 
to generate contextually appropriate suggestions. 
Recall evaluated the model by determining the ratio 
of TP to the total number of relevant items (TP + FP), 
answering: “Of all potentially relevant items, what 
proportion did the system successfully identify?” 
The F1 score, which was estimated as the mean of 
recall and precision, provided the balanced composite 
metric. This measurement was particularly valuable 
for assessing system performance in scenarios 
with irregular precision and recall, in terms of 
recommendation effectiveness. Accuracy represented 
the overall system performance by calculating 
the proportion of correctly identified relevant and 
irrelevant items. Mathematically derived as the ratio of 
all correct predictions (TP + TN) to the total number of 
predictions (TP + TN + FP + FN). This metric offered a 
comprehensive view of the recommendation system’s 
capabilities.

4. Results and Discussion
This section presents a comprehensive empirical 

analysis of the hybrid recommendation approach 
for LBSNs, utilizing the Gowalla dataset. The 
investigation provides a thorough evaluation of the 
proposed methodology, systematically examining 
multiple critical dimensions of recommendation 
generation. The research explored the interactions 
between CF techniques, spatial proximity, and 
temporal behaviors. The study employed key 
performance metrics, including precision, recall, F1 
score, and accuracy, to evaluate the performance of the 
model and recommendation efficiency.

4.1. User Influence Modeling
To highlight the influence of spatial and temporal 

features on the recommendation quality, we applied 
context-aware approaches, as shown in Fig. 3. This 
analysis optimized the matrices, streamlining their 
manipulation in subsequent computational phases.

The integration of spatial proximity demonstrated 
significant improvements in the performance of the 
recommendation system. Empirical findings uncovered 

that 78.5% of the generated suggestions corresponded 
to POIs within a 5-km radius of the user’s current 
location, aligning closely with established behavioral 
patterns in LBSNs. The analysis substantiated that 
users commonly interact with proximate POIs, with a 
notable 72.3% interaction rate for locations within a 
3-km radius. These results also emphasize the critical 
significance of spatial proximity in determining 
recommendation relevance. The temporal features also 
showed significant implications for recommendation 
accuracy. The model demonstrated remarkable 
capability in predicting user preferences across distinct 
time segments by analyzing check-in patterns. During 
non-working hours, the recommendation mechanism 
successfully suggested entertainment and food venues 
with an accuracy of approximately 82.9%. Similarly, 
during working hours, it strategically demonstrated 
work-related location recommendations, achieving 
a precision of 77.1%. Consistent behavioral patterns 
were observed across weekday and weekend contexts, 
confirming the key role of temporal features in 
enhancing the relevance of recommendations and 
contextual alignments with users’ daily activities.

4.2. Temporal Distribution
The analysis of user activities within different 

venue categories during various periods of the 
day can be observed with the help of the temporal 
distribution of the check-ins. Fig. 4 demonstrates user 
interactions spread out over time in various categories, 
including educational, food, shopping and services, 
hotel, entertainment, travel, sports, professional, and 
residential venues.

Each cell represents the percentage of interactions 
within a specific category during the corresponding 
period, with darker shades indicating higher levels of 
interaction. Educational venues showed peak activity 
of 51.61% in the morning, aligning with typical 
school and university hours, while entertainment 
venues dominated in the evening and night, with 

Fig. 3. User influence modeling. This chart shows 
how spatial and temporal patterns (e.g., proximity 

and working hours) impact user satisfaction with POI 
recommendations



DOI: 10.6977/IJoSI.202508_9(4).0008
N. U. Khan, R. Riaz, etc./Int. J. Systematic Innovation, 9(4), 106-122 (2025)

116

48.28% and 27.59% activity, respectively, reflecting 
social and leisure behavior. Food establishments were 
most active during the evening, with 40% activity, 
and maintained significant activity of 26.67% and 
20% in the afternoon and night, respectively, which 
corresponded to mealtime trends. Residential areas 
exhibit peak interactions of 42.86% and 35.71% at 
night and in the morning, respectively, as users returned 
home or began their day. Professional locations, as 
well as shopping and services, showed the highest 
engagement during traditional working and leisure 
hours, with professional venues showing high activity 
of 43.48% and 39.13% in the afternoon and morning, 
respectively. On the other hand, shopping and services 
venues reported high activity of 42.31% and 38.46% 
in the evening and afternoon, respectively. Hotels 
and travel-related venues exhibit steady activity, with 
hotels demonstrating the highest activity of 43.48% 
at night, while travel reporting consistent activity 
across all periods. These distributions underscore the 
importance of time-aware modeling in understanding 
user behaviors and optimizing LBSN-based 
recommendation systems.

4.3. Category-Wise Interaction Analysis
We also performed interaction analysis based 

on different venue categories, which is a vital 
part of understanding and utilizing user activities 
and preferences. Fig. 5 presents a comprehensive 
distribution of user interactions across different venue 
types, including food, shopping and services, travel, 
hotel, educational, entertainment, professional, sports, 
and residential domains. It represented the user 

interaction patterns across these diverse categorical 
contexts.

The professional and residential venue 
categories demonstrate the highest average and median 
interaction values, indicating the users’ tendency to 
check in at these venues. Shopping and services, as 
well as food categories, exhibit substantial interaction 
levels, suggesting that these places are prominent 
venues for user engagement. This analysis reveals a 
remarkably consistent interaction pattern across most 
categories, as evidenced by the minimal standard 
deviation. However, the sports, as well as shopping 
and services categories, exhibit marginally higher 
variability, indicating potentially more heterogeneous 
user behaviors within these categories. Conversely, the 
educational and entertainment venue categories show 
noticeably lower mean and median interaction values, 

Fig. 4. Temporal distribution of user interaction across categories. Each cell represents the proportion of 
interactions within a specific venue category during different periods (morning, afternoon, evening, and night), 

highlighting peak usage patterns

Fig. 5. Category-wise interaction analysis. 
The analysis displays normalized interaction 

values (mean, median, and standard deviation) 
across venue types, reflecting user engagement 

preferences
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suggesting comparatively reduced user engagement in 
these specific venue types.

4.4. Temporal Behavior Distribution
Temporal analysis is an important factor in 

human behavior studies, which can be achieved by 
analyzing the users’ activities during different periods 
of the day. We divided the time into four segments, 
including morning, afternoon, evening, and night. 
Fig. 6 shows the distribution of users’ interactions over 
time across various categories. For educational venues, 
most interactions (51.61%) occurred in the morning, 
reflecting typical school and university hours, with 
a decline to 38.71% in the afternoon and minimal 
activity during the evening and night. In contrast, 
entertainment venues show high activity of 48.28% 
and 27.59% in the evening and night, respectively, 
corresponding to leisure and nightlife activities. Food 
establishments reported the highest engagement in 
the evening of 40%, followed by 26.67% and 20% 
in the afternoon and night, respectively, aligning 
with dining patterns. Hotels demonstrate the highest 
activity of 43.48% at night, indicating late check-ins 
or overnight stays. Professional locations show the 
most activity of 39.13% and 43.48% in the morning 
and afternoon, respectively, which is consistent with 
standard working hours. Residential areas are highly 
engaged at night and morning, with activity of 42.86% 
and 35.71%, respectively, reflecting the daily routines 
of starting and ending the day at home. Shopping and 
services venues are most active during the afternoon 
and evening, with interactions of 38.46% and 42.31%, 
respectively, reflecting shopping and errand behaviors. 
Sports activities are distributed across the day, with the 
highest activities of 34.78% and 30.43% in the evening 
and afternoon, respectively. Travel-related venues 
show moderate activity throughout the day, with peaks 
of 34.62% the afternoon and 23.80% in the morning. 
These results emphasize the temporal nature of user 
behavior in LBSNs, providing insights into category-
specific trends that can be leveraged for time-aware 
recommendation systems.

4.5. Clustering Based on Preferences
The users’ clustering approach enables the 

systematic identification of behavioral similarity 
within the user populations. By leveraging efficient 
clustering techniques such as K-means, researchers 
can effectively stratify users based on their mutual 
interaction preferences and spatial patterns. This 
approach reveals distinct user trends, ranging from 
individuals mostly interested in food venues to those 
demonstrating explicit engagement with entertainment 
or professional venues. The clustering methodology 

provides the mechanism for generating personalized 
recommendation strategies that align precisely with 
the characteristics of each identified user cluster.

Fig. 7 presents a comprehensive scatter plot 
illustrating the empirical outcomes of K-means 
clustering applied to analyze users’ motivational 
factors for interaction across diverse venue categories, 
including food, travel, and other domains. Each 
data point represents an individual user, with the 
visualization classifying the user population into three 
distinct clusters, represented by different colors. The 
coordinate axes represent two critical dimensional 
components: food interaction, as well as shopping 
and services interaction, which serve as primary 
determinants in the cluster formation process in 
this figure. This visualization provides a graphical 
representation of user behavioral clusters, facilitating 
a deeper understanding of interaction patterns across 
various venue categories.

The clustering method presents user preferences 
through comprehensive behavioral and categorical 
interactions. User clusters are calculated based on 
distinctive venue types, such as clusters characterized 
by pronounced engagement with food, as well as 

Fig. 7. Clustering based on user preference

Fig. 6. Temporal behavior distribution across 
categories. This figure displays percentage 

interactions across categories segmented by time, 
revealing trends in check-in behavior
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shopping and services categories. Similarly, we can 
compute other clusters demonstrating significant 
interaction patterns in travel and hotel venues. This 
clustering approach enables the recommendation 
system to generate highly contextualized 
recommendations tailored to the distinct preference 
profiles of each identified user group. The cluster-
based recommendation strategy facilitates a more 
accurate and relevant user experience by aligning 
recommendation content with the observed behavioral 
and categorical preferences of each user segment.

4.6. Hybrid Recommendation System
The proposed model is implemented to determine 

its performance based on check-in data. In this 
section, we presented the results of various methods 
in comparison with our proposed model and assessed 
their effect and efficiency. In Fig. 8, user-based filtering 
identifies users with check-in patterns, achieving 
68.5% precision and 70.2% recall. While effective, 
this method encountered limitations with users having 
sparse interaction data. It was most successful when 
analyzing users with highly similar preferences, with 
65.9% of recommendations being relevant based on 
users with comparable experiences. Item-based CF 
slightly outperformed user-based, reaching a precision 
of 72.4% and a recall of up to 74.8%. It excelled in 
scenarios with consistent user behavior patterns, such as 
frequent visits to similar venue types. Recommending 
POIs based on item similarity particularly benefited 
users with clear, repetitive preferences. Applying SVD 
revealed interesting hidden relationships between 
users and POIs, and it is the most effective in sparse 
data environments, achieving 75.5% precision and 
71.7% recall. The high efficiency demonstrated SVD’s 
capability to uncover latent interaction patterns, 
generating improved recommendations for users.

The proposed hybrid model, integrating user-
based CF, item-based CF, and SVD techniques 
with context-aware spatial and temporal features, 
demonstrated superior performance compared to 
individual recommendation methods. Achieving 
precision up to 80.6% and a recall up to 77.3%, 
with an F1 score achieving up to 78.5%, the hybrid 
approach consistently delivered the most accurate 
recommendations, as shown in Fig. 8.

Table 2 provides a detailed assessment of the 
recommendation system’s accuracy across top-5, top-
10, and top-20 recommendations, demonstrating the 
model’s effectiveness in suggesting the most relevant 
items for users.

The proposed model demonstrates remarkable 
accuracy across different recommendation depths. 
For the top-5 recommendations, the system achieves 
82.3% accuracy, indicating that over four-fifths of 

the initial suggestions are highly relevant to the user. 
The accuracy progressively improves, with top-
10 recommendations reaching 90.6% and top-20 
recommendations achieving an impressive 95.2% 
precision. This improvement reveals that as the number 
of recommended options increases, the likelihood 
of suggesting relevant POIs becomes significantly 
higher. The expanding recommendation set provides 
users with greater flexibility and choice, enhancing the 
overall recommendation experience. By combining 
different methodological strategies and incorporating 
contextual factors such as venue and temporal data, 
the system generates tailored and precise suggestions. 
Considering features such as users’ venue and 
temporal aspect that enhance the appropriateness of the 
suggestions, resulting in improved user satisfaction. 
The results presented in Table 3 present the efficiency 
of our proposed hybrid model in comparison with 
baseline methods.

The baseline models demonstrate moderate 
performance, with accuracy ranging from 65% to 
73.4% and respectable precision, recall, and F1 score 
metrics. The hybrid model significantly outperforms 
these baseline approaches, with precision up to 80.6%, 
recall achieving 77.3%, and accuracy of 79.1%. The 
performance improvement stems from the strategic 
integration of CF as a hybrid model with context-
aware features and techniques, effectively mitigating 
individual method limitations. By leveraging user-
item similarities and uncovering hidden relationships 
through SVD, the hybrid model generates more 
accurate recommendations. The approach proves 
particularly powerful in data-sparse environments, 

Fig. 8. Performance comparison of 
recommendation methods 

Abbreviations: CF: Collaborative filtering; 
SVD: Singular value decomposition

Table 2. Top-N recommendation performance
Top-N Accuracy (%)
Top-5 82.3
Top-10 90.6
Top-20 95.2
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enabling more accurate and relevant suggestions 
tailored to LBSN contexts. Ultimately, the proposed 
hybrid methodology emerges as the most reliable and 
sophisticated recommendation solution for location-
based services.

5. Conclusion
In this research, we proposed a novel hybrid 

approach for group recommendations in LBSNs, 
addressing the unique contextual needs of these 
platforms. By incorporating spatial proximity and 
time-based patterns, our model effectively combines 
user-based CF, item-based CF, and SVD to enhance 
both accuracy and personalization. The integration 
of spatial and temporal factors significantly improves 
precision, as users frequently engage with nearby 
locations that align with their daily routines. Our 
evaluation demonstrated that this hybrid approach 
outperforms conventional methods, particularly 
in situations where interaction data are sparse. 
This model was able to achieve high accuracy and 
diversity in recommendations. However, limitations 
persist, especially with cold-start users and scalability 
as LBSNs expand in size. The system’s reliance 
on sufficient historical interaction data poses a 
challenge for new or infrequent users, despite the 
mitigating effect of the hybrid method. Moreover, the 
hybrid model’s computational complexity can limit 
responsiveness in large-scale, real-time applications, 
as the combination of user- and item-based filtering 
with SVD and contextual information may slow down 
recommendations in extensive datasets. In addition, 
while our model successfully accounts for user-item 
interactions, geographic proximity, and temporal 
behavior, it currently lacks real-time contextual 
adaptability factors, such as sudden location shifts or 
external conditions that are not fully captured, which 
may limit relevance in highly dynamic environments.

Future evaluations will consider deployment 
in real-time environments and validation on diverse 

LBSN datasets to assess scalability and generalization. 
It could address these limitations by enhancing cold-
start handling with advanced embedding methods or 
social network analysis, which would incorporate 
user metadata or social connections to generate 
initial recommendations for new users or items. 
Improvements for real-time recommendations 
could involve integrating dynamic contextual data, 
such as weather or event information, to adapt 
recommendations to users’ immediate surroundings 
and conditions. Furthermore, leveraging deep 
network-based models and attention mechanisms 
could improve the model’s understanding of complex 
relationships between users, items, and context, 
thereby boosting both scalability and accuracy. 
Overall, this hybrid approach demonstrates strong 
potential for effectively meeting the dynamic and 
personalized demands of LBSNs.
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