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Abstract

Fingerprint-based authentication is a critical biometric approach for ensuring security and accuracy. Traditional 
methods often face challenges such as noise and suboptimal feature extraction. To address the challenges, Fusion 
Net-3, an extensive model, is proposed to improve the speed, precision, and security level of fingerprint-based 
authentication systems. Fusion Net-3 operates through two separate stages: enrollment and authentication. During 
the enrollment phase, advanced pre-processing of fingerprint images was performed, incorporating an enhanced 
bilateral filter optimized with the seagull optimization algorithm. After pre-processing, features were obtained 
using a two-phase method: Zernike moments for shape-based features and local binary patterns for texture-based 
features. This helped ensure that fingerprint features were considered comprehensive for representation. For feature 
selection optimization, the falcon-inspired jackal optimization algorithm was proposed, a hybrid method combining 
the strengths of the golden jackal optimization and falcon optimization algorithm. Then, the selected features were 
combined using a combination of the geometric mean and the Fisher score to facilitate classification for a balanced 
and novel representation. During authentication, fingerprints were processed using similar techniques for consistency. 
Each fingerprint was labeled as genuine or fraudulent with the aid of the Fusion Net-3 model, which leverages the 
combined strengths of convolutional neural networks, ResNet-50, and U-Net. The model achieved an accuracy of 
98.956% and a mean squared error of 0.0234 when implemented on a Python platform. Overall, the Fusion Net-3 
model demonstrated superior performance compared to existing methods, effectively enhancing authentication 
accuracy and security.

Keywords: Authentication, Bilateral Filtering, Enrollment, Falcon Optimization, Fusion Net-3, Golden Jackal 
Optimization, Seagull Optimization.

1. Introduction
Biometric authentication has become the 

backbone of today’s security systems, using unique 
biological characteristics to verify identity and 
control access. Among the modalities, fingerprint 
authentication has emerged as one of the most 
robust, reliable, and widely adopted methods in 
diverse applications, ranging from unlocking 
mobile devices to national identification programs 
(Adiga & Sivaswamy, 2019; Akter et al., 2024). As 
a unique biometric characteristic, fingerprints offer 

non-intrusive, high-accuracy authentication based on 
the uniqueness of the minutiae patterns. To provide 
access, fingerprint identification systems first collect a 
person’s fingerprints, create a customized fingerprint 
template, and then compare it to a database of 
previously approved users (Ali et al., 2020; Balsiger 
et al., 2020). Even though fingerprint recognition is 
a useful biometric authentication technique, several 
issues need to be resolved. The security of the system 
is among the important elements. Since fingerprint data 
are private information, it must be shielded from online 
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dangers. Fingerprint data can be stolen and exploited 
by hackers for financial benefit. Therefore, designing 
a safe fingerprint authentication system is necessary. 
Efficiency is another challenge fingerprint recognition 
systems face. Large-scale deployments, such as those 
in government or corporate settings, require the system 
to promptly and reliably authenticate a vast number of 
users (Santos et al., 2024).

To address these challenges, researchers and 
developers have considered cutting-edge techniques 
and algorithms to enhance the efficacy of fingerprint 
recognition technologies (Zhang et al., 2019). For 
example, eye-tracking data, such as pupil dilation and 
fixation time, can be used to accurately predict cognitive 
load through machine learning models, including 
random forest (RF) and multi-layer perceptron 
(Dhiman & Kumar, 2019; Ding et al., 2020; Nasri et 
al., 2024). In addition, using an authentication system 
based on reconstruction is one innovative method. 
Reconstructing the original fingerprint picture acquired 
from the minute spots is how the reconstruction-based 
authentication system operates (Ephin & Vasanthi, 
2013; Galbally et al., 2020). The distinctive qualities 
of a fingerprint, known as minutiae points, are the 
foundation of a fingerprint template. The technology 
can authenticate fingerprints and thwart fraudulent 
assaults by reconstructing the original image. However, 
to overcome new difficulties, traditional encryption or 
detection-based protection paradigms are insufficient. 
Traffic reshaping-based solutions, such as traffic 
morphing and frame quantization, provide a partial 
defense against specific threats but lack verifiable 
assurances (Abolfathi et al., 2022). Compared to 
conventional fingerprint recognition techniques, the 
reconstruction-based approach offers several benefits. 
First, it improves security by guarding against deceptive 
tactics, such as spoofing, in which a hacker fabricates 
a false fingerprint using synthetic materials (Gao et 
al., 2020; Gavaskar & Chaudhury, 2018). It is harder 
for fraudulent methods to deceive the system because 
the system authenticates fingerprints by reconstructing 
the original image. Second, compared to conventional 
fingerprint recognition methods, the reconstruction-
based approach is more efficient (Gupta et al., 2020).

A reconstruction-based system can process the 
authentication request considerably faster because it 
does not need to process the entire fingerprint image. 
In addition, it reduces the amount of storage space 
needed to store fingerprint data, facilitating extensive 
system deployments. More research and instructional 
initiatives are required to enhance privacy-aware 
software development, while role-dependent solutions 
are needed to address privacy concerns in software 
development (Prybylo et al., 2024). The advent of 
hostile attacks has led to an ongoing interaction 
between the development of advanced attack methods 

and the application of strong countermeasures. This 
has encouraged the development of a wide range of 
attack techniques, each specifically designed to provide 
a challenge to neural networks (NNs) in different 
contexts. Moreover, there are critical challenges in the 
security and efficiency of fingerprint-based systems, 
including vulnerability to cyberattacks, susceptibility to 
spoofing, and a need for rapid and accurate performance 
in large-scale implementations. These challenges must 
be addressed to enhance the reliability of biometric 
systems, particularly in sensitive domains, such as 
financial transactions and border control (Banitaba 
et al., 2024; Wong & Lai, 2020). The super-learner 
attack, a new attack model targeting fingerprinting of 
HTTPS websites, has led to the development of the 
HTTPS obfuscation defender as a protection tactic. 
This defense mechanism uses adversarial example 
algorithms and introduces fictitious packets to interfere 
with categorization processes (Abolfathi et al., 2024). 
In parallel, reconstruction-based authentication 
methods have shown promise in enhancing fingerprint 
recognition systems’ effectiveness. These approaches 
can stop fraudulent attacks and promptly and 
accurately process authentication requests (Husson et 
al., 2018; Xu et.al, 2019). As biometric authentication 
grows in popularity, designing secure and effective 
authentication techniques is crucial to mitigate 
potential cyberattacks. The main objectives of the 
research are as follows:
(i) Improved denoising: Enhanced bilateral filtering 

optimized through the seagull optimization 
algorithm (SOA) to preserve edge features while 
effectively removing noise

(ii) Robust feature extraction: Combined use of 
Zernike moments (shape features) and local 
binary pattern (LBP; texture features) for 
comprehensive fingerprint representation

(iii) Optimal feature selection: A novel falcon-
inspired jackal optimization (FIJO) algorithm, 
hybridizing golden jackal optimization (GJO) 
and falcon optimization algorithm (FOA), 
was proposed to select the most discriminative 
features

(iv) Secure and accurate classification: Integration 
of convolutional NNs (CNNs), ResNet-50, and 
U-Net, into Fusion Net-3 to classify genuine 
versus fraudulent fingerprints

(v) Secure transmission: Incorporation of blockchain 
technology to safeguard fingerprint data integrity 
and confidentiality during authentication.

The remaining parts of the research include 
Related Works in Section 2, Proposed Model in 
Section 3, Results and Discussion in Section 4, and 
Conclusions in Section 5.
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2. Related Works
The research conducted by various researchers 

on secure biometric authentication using fingerprints 
is provided in this section (Table 1).

Jia et al. (2019) proposed a highly secure 
biometric authentication system that can be created 
using a robust 3D fingerprint template to ensure the 
uniqueness of users’ identities. This was achieved 
by computing minutiae triplets from the fingerprints’ 
minutiae points, which were then used to generate the 
secured user template.

Kareem & Okur (2021) explored how a 
compressed sensing-based compression reconstruction 
method was developed to improve heart signal biometric 
recognition using portable remote bioelectric signal 
recognition equipment. This approach utilizes bioelectric 
signals to effectively enhance the limited resources of 
the equipment, resulting in more accurate recognition.

Khodadoust et al. (2020) proposed a mathematical 
model to examine the effects of transient-state 
excitation and k-space undersampling on magnetic 
resonance fingerprinting reconstructions. The model 
establishes a direct relationship across time-varying 
RF excitation, k-space sampling, and reconstruction 
errors, all of which are dependent on spatial variations.

Koonce & Koonce (2021) used an autoencoder 
network to detect presentation attacks on fingerprints. 
A one-class approach was used to improve detection 
accuracy in the study. The proposed method aims to 
detect fingerprint presentation attacks using only one 
class of data.

Lee et al. (2022) developed an FPD-M-net, which 
is an end-to-end CNN architecture for fingerprint 
image denoising and inpainting. By treating a problem 
as a segmentation task and incorporating a structure 
similarity loss function, the architecture can effectively 
extract fingerprints from a noisy background. The 
network is based on the M-net and is fully trainable.

Li et al. (2018) used an adaptive sampling strategy 
that utilizes an approximate volume sampling method 
to enhance the accuracy of radio maps for fingerprint-
based indoor localization. This scheme employs a low-
tubal-rank tensor to model all reference points’ Wi-Fi 
fingerprints, aiming to reduce the expenditure required 
for reconstruction. The proposed approach is effective 
in enhancing the accuracy of indoor localization.

Li et al. (2022) introduced CRISLoc, the first 
localization prototype system that used channel-state 
information (CSI) fingerprinting based on ubiquitous 
smartphones. This system can passively overhear 
packets in real-time for its own CSI acquisition, 
eliminating the need for active user participation. 
With its innovative approach, CRISLoc demonstrates 
the feasibility of using smartphones for accurate and 
efficient localization.

Lin & Kumar (2018) used a new method for 
enhancing latent fingerprints, based on Finger Net, 
a CNN inspired by recent advancements in CNN 
development. The Finger Net architecture comprises 
a shared common convolution component and two 
separate deconvolution components, consisting of 
the enhancement and orientation branches. This 

Table 1. Comparison of existing literature
Authors Method Advantage Disadvantage
Jia et  al.  (2019) 3D fingerprint via minutiae triplets High security Needs 3D sensors
Kareem & Okur  (2021) Compressed sensing on heart signals Efficient, accurate Sensitive to signal noise
Khodadoust et  al.  (2020) Magnetic resonance fingerprinting model Explains error causes Complex to apply
Koonce & Koonce  (2021) One-class autoencoder for presentation attack 

detection  (PAD)
Works with one-class 
data

May miss unseen attacks

Lee et  al.  (2022) FPD-M-net for denoising Accurate, end-to-end Needs a large training set
Li et  al.  (2018) Adaptive sampling for radio maps Lower cost Sampling-dependent
Li et  al.  (2022) CRISLoc  (channel-state information via 

smartphones)
Passive, no user input Varies by environment

Lin & Kumar  (2018) Finger Net convolutional neural network Enhanced latent 
prints

Limited to poor prints

Liu et  al.  (2020a) Contactless 3D with Siamese nets No touch needed Complex setup
Liu et  al.  (2021) Cahn–Hilliard for restoration Simple, effective Narrow scope
Liu et  al.  (2022) CFD-PAD with presentation attack-adaptation 

loss
Better spoof 
detection

High training cost

Liang & Liang  (2023) Res-WCAE for denoising Lightweight, detailed Limited global view
Rahman et  al.  (2022) Minutiae and chaffs for security High privacy Complex template
Algarni  (2024) Multi-fingerprint  (BioPass) More secure login Needs user effort
Abbreviations: CFD: Channel-wise feature denoising; Res-WCAE: Residual wavelet-conditioned convolutional autoencoder.
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approach is effective in improving the quality of latent 
fingerprints for better identification.

Liu et al. (2020a) proposed a contactless 3D 
fingerprint representation learning model, utilizing a 
CNN. The model incorporates a fully convolutional 
network for fingerprint segmentation and three 
Siamese networks to learn a multi-view 3D fingerprint 
feature representation. This approach successfully 
produced precise 3D fingerprint representations 
without requiring physical contact.

Liu et al. (2021) presented a reliable and 
efficient fingerprint image restoration technique, 
utilizing a non-local Cahn–Hilliard equation designed 
for modeling microphase separation of di-block 
copolymers. The method employs a Gauss–Seidel-
type iterative approach, resulting in a straightforward 
implementation process that enhances the quality of 
fingerprint images with effectiveness and efficiency.

Liu et al. (2022) proposed a new channel-wise 
feature denoising fingerprint presentation attack 
detection technique that addresses the redundant noise 
data that were overlooked in earlier research. The 
suggested approach determines discriminative and 
“noise” channels by evaluating the significance of each 
channel to learn significant fingerprint picture features. 
To reduce interference, “noise” channel propagation is 
then muted in the feature map. To make the feature 
distribution of spoof fingerprints more dispersed and 
that of live fingerprints more aggregate, a presentation 
attack-adaptation loss is specifically introduced to 
restrict the feature distribution.

Liang & Liang (2023) presented the residual 
wavelet-conditioned convolutional autoencoder (Res-
WCAE), a lightweight and reliable deep learning 
architecture with the Kullback–Leibler divergence 
regularization that is specifically designed for 
fingerprint image denoising. Res-WCAE consists of 
one decoder and two encoders: a wavelet encoder and 
an image encoder. The bottleneck layer is conditioned 
on the compressed representation of features derived 
from the wavelet encoder, which processes both 
approximation and detail sub-images in the wavelet-
transform domain. Residual connections between the 
image encoder and decoder are employed to preserve 
fine-grained spatial features.

Rahman et al. (2022) proposed a strategy based 
on minutiae to defend fingerprint templates against 
security breaches. Even though the database provides 
an attacker with these safe minutiae templates, it is 
difficult to access the actual minutiae features of a 
user fingerprint. Minutiae-based techniques have 
been applied in the study, and the fingerprint minutiae 
characteristics and their associated parameters have 
been investigated. This technique creates a secure 
template by altering the actual minutiae information 
and adding additional chaffs (fake minutiae) to 

safeguard the minutiae features. It is nearly impossible 
to obtain fingerprint features or vault information 
using this method because the template pattern is 
completely different for each new fingerprint, even if 
the parameters are the same for the same fingerprint.

Algarni (2024) presented the novel idea of a 
multi-fingerprint sequence authentication procedure 
for user verification. For improved convenience and 
security, this multifactor methodology combines the 
use of several fingerprints with a sequence pattern, 
as opposed to the conventional, single-fingerprint 
methods. In addition, as an alternative to biometric 
usernames and text passwords, this study offers a 
thorough assessment of BioPass, a novel authentication 
mechanism that uses a multi-fingerprint sequence 
pattern.

New biometric systems utilizing optimal-
effort fingerprint templates demonstrate improved 
verification security, accuracy, and efficiency. 
However, these systems face limitations, such as 
model and hardware complications, data training 
requirements, and potential issues with compromised 
signals and noise. A unification of systems 
integrating multimodal has not been synthesized, 
and computational value overstated cases. This 
literature review highlights the potential of emerging 
approaches that maintain optimal-effort security, 
optimize user experience, minimize hardware 
dependency, and mitigate potential exploitation risks, 
all without compromising user choice or agency. 
The proposed Fusion Net-3 model, optimized using 
SOA, incorporates enhanced bilateral filtering, 
hybrid feature extraction, a novel FIJO-based feature 
selection method, and an integrated CNN–ResNet-
50–U-Net model for classification.

3. Fusion Net-3
The proposed model, Fusion Net-3, comprises 

two stages, enrollment and authentication. Using 
enhanced bilateral filtering, noises are removed from 
the images. Filter parameters are optimized using an 
SOA, and the images are enhanced using a contrast 
enhancement technique. The pre-processed output 
is then used to extract features based on shapes and 
textures. Ultimately, a unique FIJO, a combination 
of the GJO and FOA, is used for feature selection. 
The features are combined using geometric mean 
and Fisher score. The fingerprint images are given as 
input into the second phase, where pre-processing, 
feature extraction, feature selection, and feature fusion 
are conducted using similar approaches. Finally, the 
efficient (correct or incorrect) fingerprints are detected 
using the Fusion Net-3 model, which combines CNN, 
ResNet-50, and U-Net models. Fig. 1 illustrates the 
proposed model.
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3.1. Enrollment
Enrollment is the first phase of the model, 

which collects the information of scanned hands. The 
following steps provide a detailed explanation of this 
phase.

3.1.1. Pre-processing
Pre-processing is a necessary step that 

transforms raw datasets into a desired format, ensuring 
the accuracy and applicability of the data. This study 
employed two methodologies, improved bilateral 
filtering (Liu et al., 2020b; Mahum et al., 2023) 
and histogram equalization (HE) (Narodytska & 
Kasiviswanathan, 2017; Paris et al., 2009).
(a) Noise Reduction Using Improved Bilateral 

Filtering

A non-linear filter–the bilateral filter–preserves 
edges while removing noise. It considers the geometric 
proximity of adjacent pixels and the similarity of their 

gray levels (Afshari et al., 2017). The filter computes 
the local neighborhood’s weighted sum of pixels. 
These pixels are replaced with the weighted average 
of their neighbors (Gavaskar and Chaudhury, 2018). 
Both the intensity difference and the spatial distance 
of the pixel relative to its neighborhood can be used to 
determine the weights. It is formulated as:
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Where O (p, q) is the filtered output image at pixel 
(p, q), M is the input data, A (p, q) is the normalization 
factor, N (p, q) is the spatial neighborhood of I (p, q), 
and fb is the intensity kernel, which is the difference 

Fig. 1. Architecture for the proposed authentication system
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in intensities between the center pixel (p, q) and the 
surrounding pixels (i, j), fc is the spatial kernel, which 
is the spatial proximity between (p, q) and (i, j). fb and 
fc can be defined as:

f d eb

d

b� � �
�

2

22�  (2)

Where d is the intensity difference between 
pixels, σb controls the intensity kernel’s standard 
deviation;

f d ec

d
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�

2

22�  (3)

Where d is the Euclidean distance between pixels, 
σc controls the spatial kernel’s standard deviation.
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As a result, edge preservation and noise 

reduction can be accomplished using bilateral filter 
(BF). The improved bilateral filtering strategy was 
utilized in previous studies, involving the application 
of an SOA (Praseetha et al., 2019) to tune the filter’s 
parameters, including the spatial kernel (σs) and 
intensity kernel (σr), to increase denoising efficiency. 
The main purpose of the SOA is to mimic the 
migratory and predatory behaviors of seagulls in their 
native environment, achieving optimal denoising 
performance. For example, the pursuit of food is a 
defining characteristic of gull migratory behavior. 
The manner in which seagulls hunt migratory birds 
at sea is referred to as “attack behaviors.” The system 
replicates the gulls’ migratory patterns from one area 
to another. To locate the search agent, L (mobile 
behavior) is considered to avoid collisions among 
seagulls:

N L S pq q
� ��� � ��

� � � �  (5)

Where Nq
� ���

 and Sq
� ��

 are the search agent’s 
position and present positionrespectively.
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max
; , , ,max0 1  (6)

Where fc is the parameter’s frequency. When the 
search agent avoids collisions with seagulls, it moves 
in the optimal nearby direction:

M B S p S pq bq q
� ��� � ��� � ��

� � � � � � �� ��  (7)

Where Mq
� ���

 indicates the search agent’s location, 
Sq
� ��

 is the direction of the optimum search agent Sbq
� ���

, 
and B balances between exploration and exploitation 
behavior, which is stochastic and is defined as:

B = 2 × L2 × rdm (8)

Where rdm is a random number within [0,1].
Furthermore, the search agent may adjust its 

ranking concerning the most prominent search agent:

D N Mq q q
� ��� � ��� � ���

� �  (9)

Where Dq
� ���

 shows a distinction between the 
search agent and the most suitable search agent 
(i.e., the optimal seagull with a lower fitness value).

Seagulls exhibit a spiral movement while 
attacking their prey. The behavior in the x, y, and 
z planes can be stated as follows:

x’ = r × cos(l) (10)

y’ = r × sin(l) (11)

z’ = r × l (12)

r = g × elh (13)

The updated position of the search agent is given as:

S p D x y z S pq q bq
� �� � ��� � ���
� � � � � �� � � � �' ' '  (14)

Configurations for reproducibility include a 
512 × 512 pixel input image size, a 5 × 5 filter window, 
and optimized parameter values of σs = 1.5 and σr = 0.8.
(b) Contrast Enhancement using Histogram 

Equalization

Dynamic range, or the ratio of the brightest to 
darkest pixel intensities, determines image contrast. 
There are various applications for contrast enhancement 
techniques to improve low-contrast images. HE is 
a commonly employed technique. The probability 
distribution of input gray levels is used to map the gray 
levels. The histogram of the image is stretched and 
flattened to increase contrast. The probability density 
function S (Iy) for image I is provided as follows:

S I
n
ny
y� � �  (15)

Where y = 0, 1,…,L-1, y is the series of time of 
the level Iy in input images, and n indicates samples.

The cumulative density function is defined as:

c i S Iii

y� � � � �
�� 0

 (16)

Where Iy = i, y = 0,1...,L-1, and c(IL-1) = 1 (default).
The transform function f (i), based on the above 

equation, is given as:
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f (i) = I0 + (IL-1-I0) c(i) (17)

The HE results, V, which is the function of 
{S(q, r)}, is given as:

V = f(I) = {f(I(k,i)|∀I(k,i)∈I} (18)

As a result, the contrast of the images is enhanced.

3.1.2. Feature extraction
Feature extraction is the process of extracting a 

set of features from the pre-processed data. The shape 
and texture features are extracted using the Zernike 
moments (Shadab et al., 2022) and LBP (Shehu et al., 
2018; Vogel, 2022) techniques.
(a) Shape Feature Extraction Using Zernike 

Moments

The low-level feature that Zernike moments 
yield is significant. Zernike moments provide 
rotationally invariant descriptors based on the order 
n and repetition m of Zernike polynomials, computed 
from radial polynomials which capture the finer details 
of shape. Since it is rotationally invariant, recognition 
is based on the magnitude of these moments. The 
following are the Zernike radial polynomials:
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Where n is a non-negative integer, m is a non-
zero integer, n-|m| is even, and |m|≤n.

The (n, m) order of the Zernike bias function is 
given as:

Vnm (p,q) = Rnm (p,q) ejmθ (20)

Where j is −1 , and θ is tan y
x

� �
�
�

�
�
�

1 .

The Zernike moments of order n and repetition m 
of a function f (p, q) are defined as:

Z n f p q V p q dpdqnm nm�
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1

0

1

0

2

�

�
, ,*  (21)

Where Vnm
*  is a complex conjugate of Vnm.

(b) Texture Feature Extraction Using Local Binary 
Pattern

Color features use individual pixels, whereas 
texture features use groups of pixels. In the feature 
maps, an LBP is computed for every pixel. After 
comparing the data, the results are binary encoded. 
A collection of binary characteristics is produced, 
capturing certain local texture patterns. It derives 
texture information from the surface features, patterns, 
and edges. The (pc, qc) gray value of a center pixel is 
compared to the pixels of its eight neighbors to create 
an ordered binary set, or LBP. As a result, the LBP 
code is expressed as a decimal octet value.
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n
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Where ic is the gray value of the center pixel 
(pc, q) and in is the gray value of the pixels of its eight 
neighbors. After transformation, the result obtained is 
given as:
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The LBP is a texture representation method 
where the intensity difference between a central 
pixel and its neighbors is encoded. LBP involves 
parameters, such as radius (R) and neighbors (P), for 
generating binary patterns. Configurations include 
a radius of 1–3 pixels, 8–16 neighbors, and uniform 
pattern mapping. This two-phase approach will thus 
ensure full representation of features since it captures 
both the geometric structure and surface details of the 
fingerprint images.

3.1.3. Feature fusion
By utilizing the geometric mean and Fisher 

score, the fusion of selected features is achieved. 
This methodology ensures that every feature carries 
equal weight, while simultaneously maximizing the 
distinction between genuine and imposter fingerprints.
(a) Geometric Mean

The geometric mean is a widely used 
mathematical concept in finance, science, and 
engineering, providing a measure of central tendency 
for a set of numbers. Unlike the arithmetic mean, the 
geometric mean multiplies the values and takes the nth 
root of the product, making it more sensitive to changes 
in smaller values. It is particularly useful in datasets 
with extreme values or outliers. The geometric mean 
is commonly used to calculate rates of change, such as 
growth or inflation rates. It is given as:

Gm a a amm� � �1 2 ....  (24)

Where a1, a2
 ...,am are the observations.
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(b) Fisher Score

Fisher score is an effective method for reducing 
data feature dimension. Its major goal is to discover 
a feature subset that maximizes the selected features 
in a data space. Techniques such as clustering and 
dimensionality reduction are utilized to decrease 
distances between data points within a class and increase 
distances between data points in different classes. The 
Fisher score of the jth feature is calculated as:

FS f
L f

L f
j

y j

K

E
T
K

j

1

1

� � �
�

� ��
( )

( )

 (25)

Where Ly (fj) is the between-class scatter, which 
measures the spread of data points between different 
classes in a selected feature space, and L fT

K
j

� � � �  is the 
within-class scatter, which measures the spread of data 
points within each class for a particular feature. The 
between-class scatter of the jth feature is calculated by 
taking the sum of the squared differences across the 
mean μj of the jth feature in each class and the overall 
mean � j

K� �  of the jth feature, multiplied by the number 
of samples mK in each class:

L f my j K j
K

jK

E� � � �� �
�� ( )� � 2

1
 (26)

The within-class scatter matrix of the jth feature 
calculates the variance of that feature in the Kth class 
by summing the squared differences between each 
data point and the mean of jth feature in the same class:

L f aT
K

j ji
K

j
K

i

mK� � � � � �
�� � � �� ( )� 2

1
 (27)

Finally, the features are combined and the results 
are stored.

3.2. Authentication
Authentication is the second phase of the model, 

which uses the finger images as the input. In this phase, 
the input finger images are pre-processed, and features are 
extracted and selected using approaches similar to those 
employed during the enrollment phase. Once the feature 
selection is completed, blockchain (Akanfe et al., 2024) 
technology is used to securely transfer the generated 
data. With the use of a fixed distributed database and a 
hash chain of blocks that each include time-stamped 
transactions, this system organizes data. Every block in 
the chain has a distinct code, or hash, that identifies it and 
establishes a sequential relationship with the blocks that 
came before it. The hash function employed in blockchain 
depends on several important factors for its success.

On secure transmission of data through the 
blockchain, finally, the Fusion Net-3 architecture 

is used to detect real and fake fingerprints (Fig. 2). 
CNNs, ResNet-50, and U-Net are combined to provide 
an efficient method for extracting and processing 
image features. Raw picture data are first fed into the 
network to start the process. The CNN-ResNet-50 
(Wang et al., 2020) branch uses convolutional layers 
to extract local image features, batch normalization to 
normalize these features, and activation functions to 
introduce non-linearity. To obtain robust features and 
reduce computational costs, feature maps are down-
sampled through pooling layers. Deeper architectures 
are made possible by ResNet-50 blocks, which 
solve the vanishing gradient issue in deep NNs. The 
encoder-decoder structure used by the U-Net (Wang & 
Yang, 2024) branch allows it to extract both high-level 
and low-level image features simultaneously. While 
pooling layers down-sample features in the encoder 
path, convolutional layers extract local features at 
various scales. In the decoder path, up-sampling 
layers retrieve spatial information and merge features 
from corresponding encoder and decoder layers. The 
complementary information is then combined by 
merging the feature maps from the two branches. To 
map features to class probabilities, a fully connected 
layer receives this flattened representation of the 
combined features. The ultimate class probabilities for 
classification are output by a SoftMax layer.

3.2.1. Convolutional neural network–Resnet-50
Convolutional layers are usually the most 

important components in CNNs. At each convolutional 
layer, the input is convolved with an array of learnable 
filters, yielding a variety of feature maps. Let si 
represent ith feature map of S. We can utilize the weight 
Wk and bias bk to characterize the cth filter. The kth 
output is given as:

y f s W bk i k ki

d
� � �� � �

�� ; , ,k n1 2
1

 (28)

Where f (•) is an activation function, while 
Wk and bk are weights and bias, respectively. The 
extraction of local features from input fingerprint 
images is largely dependent on the CNN component. It 
identifies images’ patterns and textures, both of which 
are essential for fingerprint recognition, by applying 
convolutional filters to images.

A 50-layer network, called ResNet-50, 
has demonstrated efficacy in pre-trained image 
classification. Deeper NN trainings are difficult due 
to disappearing gradient problems. Such problems 
are attempted to be addressed by residual learning. 
A layer that learns low- or high-level features is 
taught specifically for that task. Deep NN training 
can be stabilized and sped up with the use of batch 
normalization.
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Fusion Net-3 integrates ResNet-50 into its 
architecture. The residual connections in the model 
enable the network to learn residual functions rather 
than directly approximating the underlying mapping. 
ResNet-50 allows Fusion Net-3 to train deeper NNs 
without sacrificing efficiency. In addition, batch 
normalization is applied to accelerate convergence and 
stabilize the training process.

Batch normalization works by modifying and 
scaling each layer’s activations to normalize them. It is 
usually used before the activation function in ResNet-50, 
following the convolutional layers. Each feature map 
essentially generates a new mean and standard deviation 
for every pixel. The procedure involves normalizing the 
z-score, then multiplying the results by an arbitrary scale 
parameter (α) and adding another arbitrary offset value (β). 
These are the specifications for the batch normalization.

s
s

` ��
�� �

�
�

�
��

�

�
�� �

�
�

� �  (29)

Where s, s` are feature maps and batch-
normalized value, element, and μ is the mean.

The activation function is used after batch 
normalization, improving non-linearity. The rectified 
linear unit (ReLU) is used, and it is given as:

σ(s) = max(0, s) (30)

3.2.2. Pooling layer
At times, there is redundant information existing 

in signals. The pooling process reduces the spatial size 
of the feature maps steadily, reducing the computation 
and parameter count of the network. With an n × n 
window-size neighbor denoted as P, the standard 
pooling technique is represented as:

Z
F

si ji j P
� �1 ,, 

 (31)

Where F is the number of elements in P, and si,j 
is an activation value of position i, j.

3.2.3. U-Net
The U-Net architecture is used to extract 

contextual information and fine-grained details from 
images, providing pertinent data for categorization. 
In the Fusion Net-3 model, the U-Net component is 
crucial for extracting both high-level and low-level 
features from the input fingerprint. The autoencoder 
architecture, in which the left path (encoder) is referred 

Fig. 2. Fusion Net-3 architecture
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to as the contracting or compressive path and is built 
on a standard CNN deep network, is the most similar 
to the Fusion Net-3 model’s basic structure, which 
consists of two main paths. The network’s second path, 
known as the decoder or expanding path (also called 
the up-sampling or synthesis path in some references), 
is made up of both convolutional and deconvolutional 
layers. The expanding path uses optimized techniques, 
such as concatenating skip connections, to recover 
the input image resolution and spatial structure, 
which are both compromised during down-sampling. 
The network generates dense predictions at higher 
resolutions in the expanding path, helping it to learn 
spatial classification information. Furthermore, 
it increases the output’s resolution, which is then 
transferred to the final convolutional layer to produce 
a segmented image with the same shape as the input 
image.

The contracting path is a typical CNN network, 
consisting of two successive 3 × 3 convolutions, 
followed by non-linear activations (e.g., ReLU), and a 
max pooling layer. This structure is repeated numerous 
times until the bottleneck is reached. The strided 
convolutions and pooling layers in the contracting 
path decrease dimensions while increasing the channel 
number and receptive field. This expanding path, 
which involves up-sampling feature maps from the 
bottleneck using 2 × 2 up-convolutions to recover 
the input image’s dimensions, is where the novelty 
of the U-Net originates. There are normal 3 × 3 
convolutions and ReLU activations along with a 2 × 
2 up-convolution in every step of the expanding path. 
This path’s up-sampling ability reduces the number 
of channels by half, while the image’s width and 
height are increased through the up-convolution. After 
cropping, a concatenation from the same level layer in 
the feature map’s contracting path is added to expand 
the image’s dimensions, while the spatial features are 
preserved following each 2 × 2 up-convolution.

3.2.4. Fully connected layer
The combined output features of CNN–

ResNet-50 and U-Net are input into the fully connected 
layer to improve detection accuracy. The output is 
input into the SoftMax function to predict the class of 
an input image.

� z z

z
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i

� � �
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exp

exp

( )
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 (32)

Where z and r are input and classes, respectively. 
These architectures are combined in Fusion Net-3, 
which is used in this study, to produce a strong feature 
representation that improves its ability to distinguish 
between real and fake fingerprints. ResNet-50 is 

used as a pre-trained backbone, while CNN and 
U-Net convolutional layers are configured based on 
empirical results. Key hyperparameters, including 
learning rate, batch size, number of epochs, dropout 
rate, and Adam optimizer, are selected based on grid 
search experiments from the training dataset. The 
FIJO algorithm is used to optimize feature selection, 
whereas hyperparameters and network topology are 
manually tuned to balance system performance and 
training time. When compared to using individual 
models alone, this integration improves fingerprint 
authentication’s robustness and accuracy.

4. Results and Discussion
Performance indicators were used to assess 

the outcomes of the dataset obtained. The computed 
results were compared across the proposed model and 
existing models (CNN, ResNet-50, and GoogLeNet) 
through a Python platform. The results were computed 
by considering a learning rate of 70% for training and 
30% for testing. The equations are shown as follows:
•	 Accuracy: It is the proportion of correctly 

predicted values to all observations, including 
total positive (TP), total negative (TN), false 
positive (FP), and false negative (FN). It is 
expressed as:

Accuracy TP TN
TP TN FP FN

�
�

� � �
�  (33)

•	 Precision: It is the percentage of a model’s 
true positive predictions. Precision is key in 
determining whether an observation reflects a 
real phenomenon. It is stated as:

Precision TP
TP FP

�
�

 (34)

•	 Recall: It is the percentage of true positives that 
are correctly identified. It is stated as:

Recall TP
TP FN

�
�

 (35)

•	 F-measure: It is a statistic from the combination 
of precision and recall, serving as a general 
performance evaluation score. It is stated as:

F measure Precision Recall
Precision Recall

� � �
�
�

2  (36)

•	 Matthews correlation coefficient (MCC): It is the 
degree of correlation between the predicted and 
actual outcomes. It is expressed as:

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
�

�� � � �� �
�� � �� � �� � �� �

 

 (37)
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•	 Peak signal-to-noise ratio (PSNR): It is the ratio 
between the examined image and the recovered 
image. Max represents an image’s maximum 
value, where the maximum value is 255 if 8 bits/
sample are utilized to represent the pixel. Higher 
PSNR indicates better quality. It is given as:

PSNR log Max
MSE

�
�

�
��

�

�
��10

2

 (38)

•	 Mean squared error (MSE): It is a regression 
model’s confidence measure, indicating the error 
between predicted class probabilities and true 
labels. A lower MSE value indicates stronger 
prediction confidence, especially when using 
soft probability outputs from the SoftMax layer. 
The average squared variance of the actual and 
predicted values is MSE. It is expressed as:

MSE
N

Z Zx xx

N
� ��

�
�
���1
2

1

  (39)

Where Zc and �Zc  are the actual and projected 
values, respectively, and V is the total number of data 
points.
•	 False acceptance rate (FAR): It is calculated 

by dividing the number of false-positive 
recognitions by the total number of identified 
attempts. It is expressed as:

FAR FP
FP TN

�
�

�100  (40)

•	 False rejection rate (FRR): It is the number of 
false rejections divided by the total number of 
transactions. A lower FRR indicates that fewer 
cases are being rejected by the biometric system. 
It is expressed as:

FRR FN
FN TP

�
�

�100  (41)

4.1. Parameter Evaluation
Performance measures, including accuracy, 

precision, recall, F1-score, MCC, MSE, FAR, and FRR, 
were used to evaluate the proposed Fusion Net-3 model and 
conventional strategies (CNN, ResNet-50, and GoogLeNet) 
for three datasets (LUMID, LivDet, and Biometrika; refer to 
Appendix A1). The models’ numerical results for Datasets 
1, 2, and 3 are shown in Tables 2-4, respectively.

Fig. 3 shows the graphical analysis of accuracy 
and precision of all tested models across databases, 
with the Fusion Net-3 model achieving the highest 
accuracy of 98.956%. In Dataset 2, the accuracy 
of the proposed model (95.654%) outperformed 
other models, followed by GoogLeNet (93.876%), 
ResNet-50 (92.654%), and CNN (91.765%). Similarly, 

in Dataset 3, Fusion Net-3 recorded an accuracy 
of 95.432%, markedly higher than those of CNN 
(92.876%), ResNet-50 (93.654%), and GoogLeNet 
(94.876%). The proposed model’s precision was 
98.548%, indicating a better performance compared to 
CNN, ResNet-50, and GoogLeNet. In Datasets 2 and 

Table  2. Numerical results for Dataset 1 by models
Parameter Fusion 

Net-3
CNN ResNet-50 GoogLeNet

Accuracy 
(%)

98.956 94.562 95.632 96.327

Precision 
(%)

98.548 94.685 95.975 96.852

Recall (%) 98.967 94.536 95.524 96.384
F-measure  
(%)

98.675 94.687 95.862 96.247

MCC (%) 98.635 94.368 95.427 96.784
FAR (%) 15.573 45.453 34.543 52.112
FRR (%) 19.534 46.642 36.8765 48.765
PSNR 
(dB)

18.524 15.527 14.753 12.864

Time 
complexity

5.324 9.325 8.357 7.368

MSE 0.0234 0.0612 0.0560 0.0474
Abbreviations: CNN: Convolutional neural network; 
MCC: Matthews correlation coefficient; MSE: Mean 
squared error; PSNR: Peak signal-to-noise ratio.

Table 3. Numerical results for Dataset 2 by models
Parameter Fusion 

Net-3
CNN ResNet-50 GoogLeNet

Accuracy  
(%)

95.654 91.765 92.654 93.876

Precision  
(%)

94.876 91.543 92.876 92.543

Sensitivity 94.123 91.876 92.543 92.432
Specificity 93.543 91.321 92.654 92.765
Recall  (%) 94.432 91.765 92.876 92.654
F-measure  
(%)

93.765 91.654 92.765 92.876

MCC  (%) 93.432 90.876 91.876 92.123
FAR  (%) 12.987 22.876 21.543 17.654
FRR  (%) 10.543 23.654 20.876 18.543
PSNR  (dB) 32.432 29.876 16.432 15.876
Time 
complexity

5.987 17.543 16.432 15.654

MSE 0.0201 0.1123 0.0987 0.0912
Abbreviations: CNN: Convolutional neural network; 
FAR: False acceptance rate; FRR: False rejection rate; 
MCC: Matthews correlation coefficient; MSE: Mean 
squared error; PSNR: Peak signal-to-noise ratio.
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3, the proposed model achieved the highest precision 
of 94.876% and 95.654%, respectively, indicating 
accurate fingerprint classification. This precision value 
is markedly higher than those in previous works by 
Yin et al. (2019).

Fig. 4 compares the recall and F-measure 
results of the tested models. The Fusion Net-3 
model achieved the highest recall with a value of 
98.967%, outperforming CNN, ResNet-50, and 
GoogLeNet. The proposed model’s recall values 
were 94.432% for Dataset 2 and 95.543% for Dataset 
3, also outperforming other models. Similarly, the 
F-measure of the proposed model was 98.675% for 
Dataset 1, markedly higher than CNN, ResNet-50, and 

GoogLeNet. Its F-measure values were 93.765% for 
Dataset 2 and 95.432% for Dataset 3. These findings 
indicate the proposed model’s superiority over other 
models in previous research by Zheng et al. (2019). 
They also highlight the importance of considering both 
recall and F-measure in the development of effective 
machine learning models.

The graphical analyses of MCC and MSE are 
presented in Fig. 5. The results showed that the MCC 
of the Fusion Net-3 model has a higher MCC value 
of 98.635% in comparison to CNN, ResNet-50, and 
GoogLeNet, which recorded 94.368%, 95.427%, and 
96.784%, respectively, in Dataset 1. In Datasets 2 and 3, 
the MCC of the proposed model also demonstrated the 
highest values of 93.432% and 94.654%, respectively. 
These results indicate that Fusion Net-3 is superior to 
the models in previous research Akanfe et al. (2024). 
Meanwhile, the comparison results across the tested 
models in terms of MSE showed that, in Dataset 1, 
the Fusion Net-3 model achieved a lower rate, with 
a MSE value of 0.0234, compared to CNN (0.0612), 
ResNet-50 (0.0560), and GoogLeNet (0.0474). In 
Datasets 2 and 3, the proposed model’s MSEs were 
0.0201 and 0.0434, respectively. Although the error 
rate was comparatively low, some research Stolk & 
Sbrizzi (2019) reported even lower rates, highlighting 
the need for further research in this area.

4.1.1. Time complexity
The graphical analysis of time complexity is 

presented in Fig. 6. Time complexity is a measure of 
computing difficulty that characterizes how long a 
model takes to execute. The results revealed that the 
proposed model exhibited a lower time complexity of 
5.324, compared to CNN (9.325), ResNet-50 (8.357), 
and GoogLeNet (7.368). In Datasets 2 and 3, the time 
complexity values of the proposed model were 5.987 
and 9.123, respectively, indicating a higher efficiency 
than the other models. With its lower time complexity, 
along with superior precision and accuracy, the 
proposed model outperformed all other models in the 

Table 4. Numerical results for Dataset 3 by models
Parameter Fusion 

Net-3
CNN ResNet-50 GoogLeNet

Accuracy  
(%)

95.432 92.876 93.654 94.876

Precision  
(%)

95.654 92.543 93.432 94.543

Sensitivity 95.321 92.654 93.876 94.321
Specificity 94.876 92.876 93.543 94.876
Recall  
(%)

95.543 92.765 93.432 94.654

F-Measure  
(%)

95.432 92.876 93.654 94.876

MCC  (%) 94.654 91.543 92.654 94.123
FAR  (%) 12.543 20.654 18.543 15.654
FRR  (%) 10.876 21.876 19.876 16.432
PSNR  
(dB)

32.654 30.876 31.765 30.876

Time 
complexity

9.123 16.654 15.876 10.543

MSE 0.0434 0.1034 0.0976 0.0897
Abbreviations: CNN: Convolutional neural network; 
FAR: False acceptance rate; FRR: False rejection rate; 
MCC: Matthews correlation coefficient; MSE: Mean 
squared error; PSNR: Peak signal-to-noise ratio.

Fig. 3. Graphical representation of the (A) accuracy and (B) precision results
Abbreviation: CNN: Convolutional neural network

BA
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present study as well as in earlier research Arini et al. 
(2022) and Chopra & Ansari (2022).

The PSNR graphical analysis is displayed in 
Fig. 7. The results revealed that, in Dataset 1, the 
PSNR of the Fusion Net-3 model attained a higher 
value of 18.524 dB, compared to CNN (15.527 dB), 
ResNet-50 (14.753 dB), and GoogLeNet (12.864 dB). 
In Datasets 2 and 3, the PSNR values of the proposed 
model were 32.432 dB and 32.654 dB, respectively, 
suggesting better image clarity. Notably, previous 

research has reported lower PSNR values than the 
proposed model.

Fig. 8 shows the FAR and FRR of the tested 
models. The results showed that, in Dataset 1, the 
FAR of the Fusion Net-3 model exhibited a superior 
performance with an FAR of 0.5%, compared to CNN 
(1.2%), ResNet-50 (1.6%), and GoogLeNet (1.9%). 
In Datasets 2 and 3, the FARs of Fusion Net-3 were 
relatively lower at 12.987% and 12.543%, respectively. 

Fig. 6. Time complexity analysis
Abbreviation: CNN: Convolutional neural network

Fig. 7. Peak signal-to-noise ratio analysis
Abbreviation: CNN: Convolutional neural network

Fig. 4. Graphical representation of the (A) recall and (B) F-measure analysis
Abbreviation: CNN: Convolutional neural network

BA

Fig. 5. Graphical representation of the (A) Matthews correlation coefficient (MCC) and (B) mean squared error 
(MSE) analysis

Abbreviation: CNN: Convolutional neural network

BA
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These comparatively low FAR results indicate a strong 
reliability of the proposed model. Besides, in Dataset 
1, the FRR of the Fusion Net-3 model was 0.75%, 
lower than those of CNN (0.83%), ResNet-50 (0.89%), 
and GoogLeNet (0.93%). In Datasets 2 and 3, the 
FRRs of Fusion Net-3 were 10.543% and 10.876%, 
respectively. These findings suggest the reliability of 
the proposed model when compared with the other 
models.

4.1.2. Computational complexity
This section presents the performance of 

computational complexity in runtime measurements. 
As shown in Table 5, the Fusion Net-3 model 
demonstrates superior runtime performance compared 
to the other models. The higher flop performance 
indicates the superiority of the proposed model over 
the other models.

4.2. Statistical Analysis
The statistical analysis evaluates the performance 

and data balance of the Fusion Net-3 model using 
various statistical tests, such as the Mann–Whitney 
U-test, Kruskal–Wallis test, and chi-squared test. 
These tests were applied to a balanced dataset to assess 
whether the models exhibit statistically significant 

differences. Fig. 9A-C illustrates the results of the chi-
squared test, Kruskal–Wallis test, and Mann–Whitney 
U-test, respectively.

Significant differences were observed between 
expected and observed image counts across categories, 
especially in the “Altered-easy,” “Altered-medium,” 
and “Real” categories. To ensure the proposed 
approach was trained and assessed on a balanced 
dataset, statistical tests were used to detect dataset 
imbalances. Table 6 depicts a comparison of the three 
statistical tests in terms of mean, error, and p-value.

With an error of 36,680.745 and p=0.0300, 
the results displayed a high Chi-squared statistic of 
4,497,877.2. This result illustrates notable variations 
and potential biases in the procedures used to define 
categories or collect data. When two independent 
groups were compared using the Mann–Whitney U-test, 
the results showed a mean of 4,630,356.2, an error of 
45,933.445, and p=0.0146. These results suggest a 

Table 5. Performance of flops across models
Model Flops
CNN 634×109

ResNet-50 1.57×109

GoogLeNet 3.80×109

Fusion Net-3 4.20×109

Abbreviation: CNN: Convolutional neural network.

Fig. 8. Graphical representation of the (A) false acceptance rate and (B) false rejection rate by models
Abbreviation: CNN: Convolutional neural network

B
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significant difference between the groups compared, 
adding to the evidence supporting the effectiveness of 
the proposed Fusion Net-3 model in various scenarios. 
Notably, when comparing more than two groups, the 
Kruskal–Wallis test yielded a mean of 4,564,060.8, 
an error of 38,432.850, and an incredibly low 
p=4.04×10−49. This remarkably low p-value indicates 
significant variations across the groups, underscoring 
the resilience and efficacy of the proposed model. The 
combined outcomes of these experiments indicate that 
the Fusion Net-3 model performs noticeably better than 
CNN, ResNet-50, and GoogLeNet, while effectively 
managing dataset imbalances.

4.3. Different Adversarial Attack Comparison
Tables 7-9 compare the Fusion Net-3 model with 

existing fingerprint authentication methods, focusing 
on accuracy as a common metric due to the lack of 

Table 6. Comparison of the statistical tests of 
Fusion Net-3

Statistical test Mean Error p-value
Chi-square test 4,497,877.2 36,680.745 0.0300
Mann–Whitney 
U-test

4,630,356.2 45,933.445 0.0146

Kruskal–Wallis 
test

4,564,060.8 38,432.850 4.04×10−49

publicly available metrics, such as precision, recall, 
and MCC, in many baseline studies. Table 7 presents 
the robustness of fingerprint authentication models 
against adversarial attacks using the fast gradient sign 
method (FGSM). Fusion Net-3 exhibited the highest 
accuracy of 98.956%, surpassing CNN (94.562%), 
ResNet-50 (95.632%), and GoogLeNet (96.327%). 
The table also presents the adversarial samples’ 
impact, where Fusion Net-3 demonstrated a minimal 
impact with an adversarial sample value of 0.37678, 
compared to CNN (0.32263), ResNet-50 (0.36442), 
and GoogLeNet (0.36010). These findings imply that 
Fusion Net-3 is more resistant to adversarial attacks, 
even in the presence of potential perturbations in 
fingerprint image input.

Table 8 details the accuracy obtained by 
fingerprint-based authentication models when 
subjected to adversarial attacks generated using 
the projected gradient descent (PGD) method. The 
proposed model reported an accuracy of 98.245%, 
outperforming CNN (92.654%), ResNet50 (93.432%), 
and GoogleNet (92.543%). The minimum difference 
was noted with Fusion Net-3 models at 0.38234, 
compared to larger differences recorded for CNN 
(0.32212), ResNet-50 (0.33345), and GoogLeNet 
(0.34123). These results indicate that Fusion Net-3 
offers superior resilience to PGD attacks, retaining high 
accuracy with minimal degradation in the presence of 
adversarial perturbations.

Fig. 9. Statistical analyses of the Fusion Net-3 model. (A) Chi-squared test. (B) Kruskal–Wallis test. 
(C) Mann–Whitney U-test

B

C

A
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Table 8. Accuracy and adversarial samples of models against black-box attack using projected gradient descent
Dataset Metric Fusion Net-3 CNN ResNet-50 GoogLeNet
1 Accuracy  (%) 98.245 92.654 93.432 92.543

Adversarial samples 0.38234 0.32212 0.33345 0.34123
2 Accuracy  (%) 98.543 93.234 93.765 92.543

Adversarial samples 0.37122 0.30643 0.31434 0.32344
3 Accuracy  (%) 97.976 94.432 93.432 92.543

Adversarial samples 0.36533 0.34245 0.33123 0.32875
Abbreviation: CNN: Convolutional neural network.

Table 9. Accuracy and adversarial samples of models against black-box attacks using a replay attack
Dataset Metric Fusion Net-3 CNN ResNet-50 GoogLeNet
1 Accuracy  (%) 97.542 92.643 93.234 92.123

Adversarial samples 0.37455 0.30865 0.31235 0.32133
2 Accuracy  (%) 97.654 93.765 92.876 92.123

Adversarial samples 0.37546 0.33434 0.32675 0.32764
3 Accuracy  (%) 98.123 92.876 93.76 92.123

Adversarial samples 0.38123 0.34342 0.32450 0.31457
Abbreviation: CNN: Convolutional neural network.

Table 7. Accuracy and adversarial samples of models against black-box attack using fast gradient sign method
Dataset Metric Fusion Net-3 CNN ResNet-50 GoogLeNet
1 Accuracy  (%) 98.956 94.562 95.632 96.327

Adversarial samples 0.37678 0.32263 0.36442 0.360100
2 Accuracy  (%) 98.234 92.543 92.123 96.327

Adversarial samples 0.36749 0.31122 0.35895 0.34921
3 Accuracy  (%) 97.932 93.765 93.432 92.327

Adversarial samples 0.39234 0.32865 0.36675 0.35472
Abbreviation: CNN: Convolutional neural network.

Table 9 summarizes the replay attack resilience 
of the models. Replay attacks try to cheat the system 
using replayed biometric data captured previously. 
Fusion Net-3 demonstrated the highest performance 
with an accuracy of 97.542%, compared to CNN 
(92.643%), ResNet-50 (93.234%), and GoogLeNet 
(92.123%). The value of the adversarial sample 
of Fusion Net-3 was 0.37455, lower than CNN 
(0.30865), ResNet-50 (0.31235), and GoogLeNet 
(0.32133). The results indicate that Fusion Net-3 is 
effective in countering threats from adversarial replay 
attacks, making it a secure solution for fingerprint 
authentication.

4.4. Results in the Pre-Processing and Feature 
Selection Phases of the Models

Denoising performance was evaluated using the 
signal-to-noise ratio (SNR). The ratio measures the 
proportion of the image’s valuable information relative 

to undesired artifacts or disruptions. Denoising the 
input images during the pre-processing phase revealed 
that the proposed improved bilateral filtering method 
achieved a higher SNR of 20.8 dB. In comparison, the 
median and Gaussian filters produced lower SNRs of 
17.3 dB and 18.6 dB, respectively.

Feature selection using optimization, which is 
used for selecting the accurate features, demonstrated 
that the proposed Fusion Net-3 model outperformed 
existing algorithms by achieving a 98.12% performance. 
In comparison, the FOA and GJO achieved lower 
performances of 97.35% and 97.65%, respectively.

The accuracy of 98.956% achieved by the 
proposed model surpasses that of previous research 
Srinivasan et al. (2023), Trivedi et al. (2020), indicating 
its superiority over the other models used in this paper 
and those from previous works by other researchers. 
The enhanced bilateral filtering approach for denoising 
and the combination of CNN–ResNet-50 and U-Net 
features are some of the architectural enhancements 
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that contribute to the superior performance of the 
proposed Fusion Net-3 model. Feature extraction and 
noise reduction are enhanced by these factors, resulting 
in increased accuracy and robustness. The model’s 
capacity to preserve excellent image quality and 
prediction accuracy is further supported by the lower 
MSE and higher PSNR. In addition, the computational 
efficiency of the proposed method is also enhanced, 
with a time complexity of 5.324, demonstrating its 
usefulness in real-world applications.

The graphical analysis of receiver operating 
characteristic for the proposed and existing methods 
is shown in Fig. 10. Fusion Net-3 exhibited the 
highest area under the curve score (0.97), indicating 
its superior ability to balance reducing false positives 
(high specificity) with accurately identifying positive 
cases (high sensitivity).

The study’s findings show that the proposed 
Fusion Net-3 model consistently outperforms other 
models, CNN, ResNet-50, and GoogLeNet, in a number 
of performance metrics. Specifically, Fusion Net-3 
achieves an accuracy of 98.956%, surpassing CNN 
(94.562%), ResNet-50 (95.632%), and GoogLeNet 
(96.327%). It also exhibits higher precision (98.548%), 
recall (98.967%), and F-measure (98.675%) than the 
other models. In addition, Fusion Net-3 performs 
better than other models according to the MCC, which 
stands at 98.635%. This suggests a strong correlation 
between expected and actual outcomes. Furthermore, 
the proposed model outperforms the other models in its 
resilience to black-box attacks using FGSM, attaining 
an accuracy of 98.956% against adversarial samples.

The proposed model of Fusion Net-3 
demonstrates an accuracy level of 98.956%, 
alongside enhanced security features that address 
crucial challenges in fingerprint-based authentication, 

including noise reduction, feature extraction, and 
resistance to cyberattacks. In industries such as finance, 
healthcare, and national security, where the integrity of 
data and authenticity are important, this model would 
improve access control mechanisms, reduce fraud 
cases, and enhance operational efficiency. Moreover, 
the integration of blockchain technology in the model 
ensures secure data transmission, making it a viable 
solution for large-scale deployments in government and 
corporate settings. Furthermore, improved processing 
speed and low error rates also make it suitable for real-
time applications, such as mobile authentication and 
border control systems, fostering wider acceptance of 
biometric security solutions. Such advances not only 
raise the confidence level of users in biometric systems 
but also pave the way for integrating them with newer 
technologies, such as Internet of Things-enabled smart 
environments and automated customer service kiosks.

The most significant limitation of this study is 
the variability in fingerprint image quality due to 
variations in acquisition devices, environment, and 
user-related inconsistencies. This may introduce noise 
and degrade the robustness of the model. In addition, 
adversarial attacks still pose a threat since an intelligent 
spoofing technique can potentially bypass the system 
with advanced security functionalities. To address 
these limitations, future work should expand the 
dataset diversity, improve computational efficiency, 
and further strengthen resilience against emerging 
attack vectors.

5. Conclusion
A fingerprint-based authentication system 

is a biometric authentication method that uses 
multiple techniques to enhance overall security and 
authentication accuracy. This study proposes the 
denoising-based Fusion Net-3 model to address the 
shortcomings of the currently existing methods. There 
are two stages to it: enrollment and authentication. 
The scanned information of hands is collected and pre-
processed in the first phase using enhanced bilateral 
filtering, where the filter parameters are optimized 
using an SOA and the images are enhanced using a 
contrast enhancement technique. The pre-processed 
output is then used to extract features based on shapes 
and textures. Ultimately, a unique FIJO algorithm, a 
combination of the FOA and GJO algorithms, is used 
for feature selection to extract the optimal features. The 
selected features are combined using geometric mean 
and Fisher score. In the second phase, the fingerprint 
images are input and undergo pre-processing, feature 
extraction, and feature selection using similar methods 
utilized during the enrolment phase. The efficient 
(correct or incorrect) fingerprints are detected using 
the Fusion Net-3 model, which combines CNN, 

Fig. 10. Receiver operating characteristic curve 
analysis

Abbreviations: AUC: Area under the curve; 
CNN: Convolutional neural network
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ResNet-50, and U-Net models. By implementing the 
proposed model on the Python platform, it achieved 
an accuracy of 98.956%, a precision of 98.548%, a 
recall of 98.967%, an F-measure of 98.675%, an MCC 
of 98.635%, a time complexity of 5.324, a PSNR of 
18.524 dB, and an MSE of 0.0234. The Fusion Net-3 
model outperforms the currently existing models 
based on these results. The proposed model is a 
classifier with high performance, but it has limitations, 
such as being influenced by poor-quality fingerprints 
and computational costs. Further work includes 
multimodal biometric systems and lightweight NNs in 
mobile or embedded systems, as well as investigating 
adversarial robustness and real-time spoof detection.
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Appendix
Appendix A1. Dataset details

Dataset 1: Six thousand fingerprints from 600 African participants make up the Sokoto Coventry Fingerprint 
Dataset (SOCOFing; https://www.kaggle.com/datasets/ruizgara/socofing; Xiao et al., 2019). The experimental 
settings and datasets used were consistent across all models. Each participant, all of whom were at least 18 years 
old, submitted 10 fingerprints. Gender designations and hand and finger names are included in SOCOFing. The 
STRANGE toolbox was utilized to generate synthetic modifications of these fingerprints, including three distinct 
levels of obliteration, central rotation, and z-cut change. The SDU03PTM sensor (SecuGen, USA) and Hamster Plus 
sensor (HSDU03PTM, SecuGen, USA) scanners were used to acquire the original images.

Dataset 2: FVC2002 fingerprints (https://www.kaggle.com/datasets/nageshsingh/fvc2002-fingerprints). These 
datasets were chosen due to their inclusion of benchmarked and standard fingerprints collected from various sensors, 
displaying various characteristics.

Dataset 3: Fingerprint Dataset for FVC2000_DB4_B (https://www.kaggle.com/datasets/peace1019/fingerprint-
dataset-for-fvc2000-db4-b). A collection of fingerprint photos utilized for fingerprint recognition studies. This 
fingerprint dataset can also be used for data augmentation activities. It comprises 800 excellent fingerprint photographs, 
each measuring 160 × 160 pixels and having a resolution of 500 DPI.
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