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Abstract

Speech emotion recognition in Marathi presents considerable hurdles due to the language’s distinct grammatical 
and emotional characteristics. This paper presents a robust methodology for classifying emotions in Marathi 
speech utilizing advanced signal processing, feature extraction, and machine learning techniques. The method 
entails collecting diverse Marathi speech samples and using pre-processing steps such as pre-emphasis and voice 
activity detection to improve signal quality. Speech signals are segmented using the Hamming window to reduce 
discontinuities, and features such as Mel-frequency cepstral coefficients, pitch, intensity, and spectral properties are 
retrieved. For classification, an attentive deep belief network is paired with a support vector machine, which uses 
attention techniques and batch normalization to improve performance and reduce overfitting. The suggested approach 
surpasses existing models, with 98% accuracy, 98% F1-score, 99% specificity, 99% sensitivity, 98% precision, and 
98% recall.

Keywords: Speech Emotion Recognition, Voice Activity Detection, Mel-Frequency Cepstral Coefficient, Deep Belief 
Network, Support Vector Machine

1. Introduction

User interfaces are growing more complicated, 
with voice processing technology allowing users to 
communicate without physically using a keyboard 
(Chaudhari et al., 2023). Speech is an important type 
of human-to-human communication that provides 
emotional and psychological information. Speech 
processing provides sound qualities and characteristics 
that can be used to extract meaningful information 
(Papala et al., 2023). Speech emotion classification is 
not only at the core of human life and action, as most 
scientific and psychiatric endeavors have shown, but it 
can also be studied using the computing tools of today’s 
modernist conception of science. One unanswered 
topic, nevertheless, is how the application of machine 
learning techniques to the study of the typical, human, 
and empirically observed dynamics of emotion 
classification has changed, evolved, or expanded in 

scope (Akinpelu & Viriri, 2024). However, identifying 
emotions from speech remains challenging due to 
the range of expressions, even for the same feeling 
(Lieskovská et al., 2021). Joy, fury, fear, and sorrow 
have similar acoustic features, such as voice volume, 
pitch, and the number of times their speech meets the 
zero axis (Madanian et al., 2023). This issue stems from 
the recognition of these two sets of emotions, which 
we extract directly from speech signals or text, and 
the feature set used for emotion detection (Hammed 
& George, 2023). Acoustic elements of speech, such 
as pitch, intensity, and volume, can also be deceptive 
when considered alone (Kaur & Singh, 2023). People 
employ speech signal features and speech semantics 
to communicate their emotions in everyday situations, 
emphasizing the significance of extracting emotions 
from both acoustic and semantic variables before 
concluding the underlying emotions in a speech signal 
(Zaidi et al., 2023).
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Artificial intelligence (AI) advancements have 
improved the comfort and convenience of human-
computer contact (Yang et al., 2024). The next 
wave of AI development will focus on enhancing 
speech emotion recognition (SER), which has both 
theoretical and practical ramifications (Harhare & 
Shah, 2021). Feature extraction is critical in speech 
signal processing, and hand-designed features have 
been used for SER (Bachate et al., 2022). The spectral 
feature, which considers both the frequency and time 
axes, has gained prominence in recent years. There 
are several challenges with the traditional method of 
identifying emotion from speech utterances. Many 
of the current methods, including the support vector 
machine (SVM), hidden Markov model, and Gaussian 
mixture model, rely on automated speech recognition, 
which is highly dependent on dataset manipulation. 
Any changes may necessitate reconstructing the entire 
model. It is impossible to categorize emotion lightly 
because it contains important information that has the 
power to either make or break a person’s personality. 
To avoid some of these issues with the conventional 
method (Akçay & Oğuz, 2020). However, these 
manual abilities are limited and cannot adequately 
portray emotions in speech. To solve this, neural 
networks have proposed a solution that incorporates 
deep learning into the model-building process (Alam 
Monisha & Sultana, 2022).

Deep learning features extract specialized feature 
representations from big learning problems, which 
reduce the incompleteness caused by artificially created 
features (Padman & Magare, 2022). The standardized 
pre-trained (Chai et al., 2021) model is typically used 
to address the issue of the inadequate training dataset in 
transfer learning, a fundamental area of deep learning 
that has demonstrated effectiveness in a variety of 
computer vision-related applications, including 
emotion identification (Li et al., 2021). It is a deep 
convolutional neural network (DCNN) subdivision. 
Due to its inherent capacity to extract speech features 
from speech signals distinctively and efficiently, the 
DCNN application to emotion categorization gained 
prominence (Oh & Kim, 2022). Researchers are 
constantly on the lookout for new DCNN techniques 
(Byun & Lee, 2021) that can produce more noticeable 
results, but the current findings have exposed the 
long-standing issues of inadequate label datasets for 
the classification of speech emotion and a high level 
of parameterization of the field. As a result, there is a 
need to develop a dependable method for automatic 
speech detection.

2. Literature Survey
Section 2 presents an overview of the current 

research in SER, summarizing and discussing 

key literature. SER is critical for understanding 
human emotional behavior and relies on identifying 
distinguishing traits. Alluhaidan et al. (2023) 
enhanced SER system performance by combining 
Mel-frequency cepstral coefficients (MFCCs) and 
time-domain features. To create the SER model, a 
convolutional neural network (CNN) was fed the 
suggested hybrid features. The current work limits 
the acquisition of high-level acoustic information 
crucial for accuracy because it does not compare 
SER approaches across datasets and does not include 
recurrent neural networks. Kawade & Jagtap (2024) 
employed a DCNN and multiple acoustic features 
and proposed a cross-corpus SER (CCSER) for an 
Indian corpus. For feature selection, Fire Hawk-based 
optimization reduces computational complexity and 
enhances feature distinctiveness. Better correlation, 
greater feature representation, and a more accurate 
description of the speech signal’s timbre, intonation, 
and pitch variation are all provided by the DCNN 
method. However, its capacity to generalize across 
a variety of emotional circumstances is diminished 
by its lack of domain adaptability and inadequate 
global and local acoustic properties. Bhangale & 
Kothandaraman (2023) displayed the acoustic feature 
set using the following methods to increase the feature 
distinctiveness: MFCC, linear prediction cepstral 
coefficients (LPCCs), wavelet packet transform 
(WPT), zero crossing rate (ZCR), spectrum centroid, 
spectral roll-off, spectral kurtosis, root mean square 
(RMS), pitch, jitter, and shimmer. In addition, a 
lightweight, compact one-dimensional DCNN is 
employed to capture the spoken emotion signal’s 
long-term relationships and reduce computational 
complexity. The system is not resilient under CCSER 
under different noise settings and suffers from class 
imbalance as a result of unequal dataset training. 
Farooq et al. (2020) conducted a project to improve 
SER by employing a DCNN to classify emotions during 
human-machine interaction accurately. The DCNN 
extracts features from complex speech-emotional 
datasets using a correlation-based feature selection 
method. The approach obtains 95.10% accuracy 
in speaker-dependent SER tests with four publicly 
available datasets: Emo-DB, SAVEE, IEMOCAP, 
and RAVDESS. This is especially essential in audio 
conferencing, where traditional machine learning 
methods are less trustworthy due to noise sensitivity 
and accent fluctuations. Sonawane & Kulkarni (2020) 
used a deep learning strategy for emotion speech 
detection that employs a multilayer CNN and a simple 
K-nearest neighbor classifier, which has been shown 
to outperform the current MFCC method in real-time 
testing on the YouTube database. This technology 
is critical for SER in real-time applications such as 
human behavior assessment, human–robot interaction, 
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virtual reality, and emergency rooms. Sajjad & Kwon 
(2020) created a new framework for SER that selects 
sequence segments based on cluster-level similarity 
measures. The short-time Fourier transform technique 
transforms the sequence into a spectrogram, which is 
then input into a CNN model for feature extraction. The 
CNN features are normalized for accurate recognition 
and input into bidirectional long short-term memory 
for emotion recognition. The system is evaluated using 
typical datasets to enhance recognition accuracy and 
processing time.
The contributions of this work are as follows:
•	 The study focuses on creating a diverse dataset 

of Marathi voice samples to capture the unique 
grammatical and emotional characteristics of the 
Marathi language.

•	 It employs advanced feature extraction 
techniques, including pre-emphasis; voice 
activity detection (VAD); and acoustic, prosodic, 
and spectral features, to capture nuanced 
emotional traits in Marathi speech.

•	 The study also develops a hybrid classification 
model combining a deep belief network (DBN) 
and an SVM, enhancing feature representation 
and emotion recognition accuracy.

3. Proposed Methodology
SER in Marathi is a significant difficulty due 

to the language’s unique grammatical and emotional 
characteristics. To address these challenges, a 
complex methodology was developed for improving 
emotion classification accuracy in Marathi speech 
samples. The dataset compilation included specifics 
about the Marathi voice samples, such as their 
source, size, emotional categories, and demographic 
diversity, alongside the procedures for collection and 
annotation. For pre-processing, the exact parameters 
for pre-emphasis filters improved the speech signal 
by removing low-frequency noise. VAD was then 
utilized to determine the beginning and conclusion of 
speech by combining temporal and frequency domain 
approaches. The speech signal was divided into smaller 
frames using a Hamming window to reduce disruptions 
at frame boundaries, which must be clearly outlined. 
Feature extraction processes detailed the computation 
of MFCCs, including the number of coefficients and 
window settings, as well as the calculation methods for 
prosodic features such as pitch, intensity, and duration, 
and spectral features such as spectral centroid and zero-
crossing rate, spectral bandwidth, and spectral roll-off, 
provide additional information about the frequency 
distribution and periodicity of the speech signal. The 
model design specified the architecture of the attentive 
DBN, including layer configurations, hidden units, 
activation functions, and the attention mechanism, 

as well as the kernel type and hyperparameters for 
the SVM. Regularization techniques, such as batch 
normalization, included parameter settings, and the 
training process were described in terms of optimizers, 
learning rate, epochs, and stopping criteria. Evaluation 
methods outlined the performance metrics, validation 
strategies, and comparison benchmarks. This 
methodology aims to overcome the limits of existing 
SER methods by increasing the feature representation 
of Marathi speech and employing modern machine 
learning algorithms for more accurate emotion 
recognition (Fig. 1).

3.1. Pre-emphasis
A pre-emphasis filter was used to boost the 

high-frequency components of an audio signal. This 
step was essential for capturing the characteristics of 
the input speech samples. In our method, we started 
by eliminating noise from the input samples, which 
helped with feature extraction.

3.2. VAD
The VAD is a technique for determining whether 

speech is present in each frame of a noisy signal. It 
consists of two processing stages: gathering features 
from noisy signals to discriminate between speech 
and noise and applying a detection approach to these 
data. This article examines the extraction of features 
and the performance of VAD algorithms (Fig. 2). 
Speech detection has poor temporal resolution since 
it is usually divided into shorter frames rather than 
deciding for each sample: Equations (1-3).

xl = [x(lL – N + 1),…, x (lL – 1), x (lL) ]2 (1)

H1: x(l) = b(l) + s(l) (2)

H0: x(l) = b(l) (3)

The noisy frame can be assumed to be a 
combination of speech components (s [L] and noise (b 
[L]) or simply noise. The decision for one hypothesis, 
Equations (4 and 5).

VAD n l
WhenH is accepted
WhenH is acceptedftr ,
,( ) = 




1

0

1

0

 (4)

VAD n l
where ftr x l n
where ftr x l nftr ,
, ( ( )

, ( ( )
( ) = >

≤




1

0
 (5)

3.3. Acoustic Feature
Acoustic aspects of a voice signal describe 

its physical characteristics in terms of frequency, 
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Fig. 1. Block diagram of the proposed methodology 
Abbreviations: DBN: Deep belief network; SVM: Support vector machine

Fig. 2. Block diagram of voice activity detection
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amplitude, and volume. The proposed acoustic 
feature set consisted of various spectral features, 
time-domain features, and voice quality factors that 
describe speech emotion. The acoustics features 
extracted are MFCC, LPCC, WPT, ZCR, RMS, SK, 
jitter, shimmer, pitch frequency, formants, and their 
mean and standard deviation. To eliminate noise and 
disturbances, the speech stream was sent through a 
moving average filter before being processed into 
various properties.

3.3.1. MFCC feature extraction
The MFCC is a technique for extracting spectral 

data regarding speech and human hearing perception 
(Abdel-Hamid et al., 2020; Shah et al., 2021). It 
entails normalizing the emphasis, removing noise and 
disturbances in raw emotional speech, and dividing 
the signal into 40-ms frames with a 50% frameshift 
(Fig. 3). For four-second voice signals, 199 frames 
were generated, each with a 40-ms frame width and 
50% overlapping. Equation (6) demonstrates that the 
nearest frequency components are combined with a 
single Hamming window and a sample duration of 
30 ms.

H n cos n
N

n N( ) = −( ) − ×
−( ) ≤ ≤ −1

2

1
0 1α α π
,  (6)

The discrete Fourier transform converts time-
domain emotion speech data into frequency-domain 
counterparts, revealing vocal tract characteristics. The 
signal was processed using Mel-frequency triangular 
filter banks, which provided perceptual information 
for speech hearing. Equations (10 and 11), which 
convert linear to Mel frequency and vice versa, ensure 
appropriate interpretation of speech-hearing perceptual 
information.

( ) ( ) ( )
2

1

0
,0 , 1

−−

=
= × × ≤ ≤ −∑

j nk
N N
n

X K x n H n e n k N


 (7)

X
N
X Kk =

1 2
| ( ) |  (8)

ET k X m Mm mk

k
k= ∇ ( )× = …

=

=∑ 0

1
1 2; , ,  (9)

Mel f
� �2595 1

700
log  (10)

f
Mel

= −7010 12595  (11)

The discrete cosine transform of the log-filter 
bank energy signal yields an L number of cepstral 
coefficients, as shown in Equation (12).

MFCC log ET cosj m
mi m

M
m� � �� �

�� 10
1

0 5( . )
�  For 

j=1, 2… L (12)

According to earlier research, the MFCC 
contains 39 variables, including the speech signal’s 
energy, 12 coefficients, and 26 derivatives, all of which 
are critical for distinguishing emotional speech shifts 
(Er, 2020; Kishor & Mohanaprasad, 2022).

3.4. Prosodic Feature
Prosodic features are components of speech 

that extend beyond phonetic segments, including 
intonation, stress, rhythm, and tempo. These qualities 
are essential for conveying meaning, emotion, 
and intent in spoken language. Understanding and 
analyzing prosodic features can help improve speech 
recognition systems, natural language processing, and 
communication interfaces. Prosodic features such as 
pitch, intensity, and duration are crucial for analyzing 
and interpreting vocal characteristics, especially in the 
context of emotional expression.

To calculate the pitch period (T0), the following 
formula in Equation (13) was used,

T
Fo =
1

0

 (13)

Intensity assesses the loudness or vigor of the 
voice. Variations in intensity can reflect emotional 
states, with higher intensity frequently associated 
with anger or enthusiasm and lower intensity with 
melancholy or peacefulness (Equation [14]).

RMS
N

x i
N

N
�

��1 2

1
[ ]  (14)

Fig. 3. Process flow of Mel-frequency cepstral coefficient feature extraction 
Abbreviation: DFT: Discrete Fourier transform
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Duration refers to the length of time a sound is 
held. The duration of spoken words and the gaps between 
them can reveal information about a speaker’s emotional 
state. For example, lengthier durations and pauses may 
imply reluctance or reflection, whereas shorter durations 
may show hurry or excitement (Equation [15]).

Duration = N × Ts
 (15)

Where T
fN
s

=
1  and windowing fs is the sampling 

frequency.

3.5. Spectral Features
They are important in audio signal processing 

because they provide a complete picture of the signal’s 
properties. Each of these characteristics contains 
important information about the signal’s frequency 
distribution and periodicity, resulting in a more 
complete and detailed feature set.

A higher spectral centroid usually indicates a 
brighter sound, which is common in speech and music 
analysis. For example, in voice processing, the spectral 
centroid can aid in discriminating between distinct 
phonemes and emotional tones.

Spectral bandwidth measures the width of the 
spectrum and offers information about the range of 
frequencies in the signal. This function is especially 
important for determining the timbral properties of 
sound. A broader bandwidth typically suggests a richer 
and more complex sound, which can be critical in 
music genre classification and speaker recognition.

The spectral roll-off is useful for distinguishing 
between percussive and harmonic sounds. In music, 
it can aid in instrument detection, while in speech 
processing, it can help distinguish between voiced and 
unvoiced speech parts.

The ZCR is the rate at which a signal changes 
sign from positive to negative, or vice versa. It is a 
simple but powerful function for detecting the noise 
and roughness of an audio source. High ZCR readings 
frequently indicate the presence of high-frequency 
components, which are found in fricative sounds in 
speech and some musical instruments such as cymbals.

Incorporating these spectral properties into audio 
analytic frameworks can improve the accuracy and 
resilience of a wide range of applications, including 
speech recognition, music information retrieval, and 
audio categorization. These elements enabled a more 
comprehensive comprehension of the audio content 
by collecting specific information about the signal’s 
frequency distribution and periodicity.

3.6. DBN
The DBNs are classified and feature extracted 

using restricted Boltzmann machines with two 

visible and hidden layers (Li et al., 2022). These 
layers are connected by weights, but nodes within 
the same layer are not. Backpropagation was used to 
train DBNs, as it is for all multilayer neural networks. 
In the first step, input data were used to forward-
propagate restricted Boltzmann machines in each 
layer, and high-level abstractions were constructed 
by translating feature vectors to different feature 
spaces. V0 acted as both the first visible and input 
layer, whereas parameter W0 was learned from 
training data to rebuild the hidden and second visible 
layers (Arul, 2021) (Fig. 4).

A DBN is useful for estimating the posterior 
probability of a given feature vector. The parameters 
of DBN are W, b, and c. The probability of input vector 
v and output vector h is given below in Equation (16):

p v h e
Z

E v h
,

( , )

( ) =
−

 (16)

Where E (v, h) is the energy function (Equation 
[17]):

E(v, h) = –bT v – cT h – hT Wv (17)

The normalizing factor, Z, was calculated by 
adding the numerator of (16) to all conceivable h and v 
statuses (Equation [18]).

Z e E v h
v h

� �� ( , )

,
 (18)

Fig. 4. Structure of a deep belief network 
Abbreviation: RBM: Restricted Boltzmann machine
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The DBN produced discriminative features that 
resemble non-linear correlations in voice samples, 
hence reducing the need for sophisticated feature 
extraction and selection. Hidden layers learned 
audio features from the input layer, which are 
subsequently used by the output layer to classify the 
input sample.

3.7. SVM for Emotional Classification
SVM is a nonlinear classifier that employs a 

kernel mapping function to convert input feature 
vectors into a higher-dimensional feature space 
(Fig. 5). To maximize discrimination, the separation 
plane should be advantageously positioned between 
the borders of two classes (Kok et al., 2024). Support 
vectors span the plane and reduce the number of 
references. The global goal is to find the equation of a 
hyperplane that divides p (Equation [19]).

yi [(w.xi) + b] ≥1 ∀i = 1,2,…,N (19)

The pair (w, b) defines a hyperplane 
(Equation [20]):

(w.xi) + b = 0 (20)

This plane is known as the separating hyperplane. 
To identify the best-separating hyperplane, the 
following optimal problem in Equations (21 and 22) 
was considered:

( )
1

, , 1

1
2

( , )

=

=

∝ = ∝ −

∝ ∝

∑
∑

N
ii

N
i j i j i ji j

minimize w

y y K x x  (21)

Subject to 
1 

0 0, 1,2, ,,
=
∝ ∝ ≥ ∀ = …=∑N

i i ii
y i N  (22)

Proper non-linear kernels can transform non-
linear classifiers into linear ones in the feature space. 
Some common kernel functions (Tiwari et al., 2022) 
are listed below in Equations (23-25):

Linear kernel:

K(xi, xj) = xi.xj (23)

Polynomial kernel:

K(xi, xj) = xi.xj + β)d (24)

Radial basis function kernel:

k x x exp
x x

i j
i j

,
||

||� � � �
��

�
�
�

�

�
�
�

2

2
2�

 (25)

For classification, a novel attentive DBN was 
paired with an SVM. This hybrid technique used the 
strengths of both models to improve classification 
performance. Attention methods were built into the 
DBN to dynamically weigh the contributions of 
various hidden units at its levels. This enabled the 
model to focus on salient traits that are most essential 
to the classification goal while ignoring irrelevant 
ones, resulting in increased accuracy. Regularization 
approaches, such as batch normalization, were 
also used to prevent overfitting in the model. These 
strategies serve to stabilize the learning process and 
increase the model’s generalization capacity, ensuring 
that it performs well on both training and unseen data. 
This strategy was especially effective for complex 
classification tasks since it combines attentive 
processes with robust regularization methods.

4. Results and Discussion
The implementation was conducted using the 

Python programming language on a Windows 7 
(64-bit) operating system with an Intel Pentium CPU 
and 8 GB of memory.

4.1. Data Description
The trials were carried out with the EMODB 

speech emotion database, which contains 535 
utterances of seven emotions from ten German 
professional actors (Abdusalomov et al., 2023), and 
the RAVDESS emotional speech dataset, which 
contains 1440 samples from 24 actors. The RAVDESS 
dataset contains five emotions: anger, none, happiness, 
calmness, and fear (Abdusalomov et al., 2023). The 
original EMODB database samples are down-sampled 
to 16 kHz, yielding four-second samples.

Fig. 5. Block diagram of the support vector machine system



DOI: 10.6977/IJoSI.202508_9(4).0006
V. N. Gaikwad, R. K. Budania/Int. J. Systematic Innovation, 9(4), 71-83 (2025)

78

4.2. Killer Whale Optimization Algorithm
Fig. 6 depicts the fitness graph for the Killer 

Whale Optimization algorithm; the fitness value at 
iteration 1 is 0.0920, showing that the algorithm is in 
the early stages of investigating possible solutions. By 
iteration 2, the fitness value has improved to 0.0751, 
indicating that the algorithm is effectively refining 
its search and discovering superior solutions. From 
iterations 3 to 5, the fitness value remains constant at 
0.0751, indicating that the algorithm has hit a local 
optimum and is performing consistently without 
major improvements. Between iterations 6 and 10, the 
fitness value drops significantly to 0.0750, indicating 
that the algorithm is still engaged in exploration and 
exploitation, but the benefits are minor at this time.

4.3. Confusion Matrix
Fig. 7 compares a model’s predictions to real 

emotions in a dataset, indicating both strengths and 
opportunities for development. The model guessed 
“none” 210 times, “angry” 35 times, “happy” 146 times, 
“calm” 66 times, and “fearful” 234 times. Diagonal 
values indicate good predictions, and higher values 
imply better classification accuracy. For example, 
the model accurately predicted “fearful” 234 times, 
indicating excellent performance. Off-diagonal 
values show misclassifications and provide areas for 
improvement. Overall, the model’s performance is 
evaluated to identify its strengths and opportunities for 
development.

4.4. Receiver Operating Characteristic Curve 
Under the Area Under the Curve

The true positive rate (TPR), also known as 
sensitivity or recall, quantifies the proportion of 
actual positives properly detected by the model. 
It is calculated using the following formula in 
Equation (26):

( )
  ( )

    ( )
=

+
True Positive TPTPR

True Positive TP False Negative FN  (26)

The false-positive rate (FPR) is the percentage 
of actual negatives that are wrongly recognized as 
positives by the model. It is calculated using the 
following formula in Equation (27):

( )
  ( )

    ( )
=

+
False Positive TPFPR

False Positive TP True Negative FN
 (27)

Fig. 8 depicts the relationship between the TPR 
and the FPR, with each axis ranging from 0.0 to 1.0. 
The area under the curve (AUC) for each class is shown 

below: Class Zero has an AUC of 100%, Class One 
has an AUC of 99%, Class Two has an AUC of 98%, 

Fig. 8. Receiver operating characteristic curve under 
the area under the curve

Fig. 7. Graph of the confusion matrix

Fig. 6. Killer Whale Optimization (KWO) algorithm
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Class Three has an AUC of 99%, and Class Four 
has an AUC of 98%. These AUC values indicate the 
classifier’s performance, with higher values suggesting 
a stronger ability to differentiate between classes.

4.5. Performance Metrics
The performance metrics include a variety of 

critical indicators for assessing a model’s success.
Fig. 9 displays the performance metrics, with the 

x-axis representing the score ranging from 0.0 to 1.0. 
The results achieved are as follows: accuracy 98%, 
precision 98%, recall 98%, F1-score 98%, sensitivity 
99%, and specificity 99%.

4.6. Precision for Each Class
The precision formula calculates the accuracy of 

a model’s positive predictions. The definition goes as 
follows in Equation (28):

Precision TP
TP FP

�
�

 (28)

Fig. 10 shows the precision reached for each 
emotion class, with x-axis values ranging from 0.0 
to 1.0. The emotions are divided into five categories: 
angry, none, happy, calm, and fearful. The precision 
for each class is as follows: angry 99%, none 82%, 
happy 98%, calm 98%, and fearful 99%.

4.7. F1-Score for Each Class
The F1-score combines precision and recall into 

a single metric. It is very useful when trying to achieve 
a balance between precision and recall, particularly if 
your class distribution is asymmetrical (Equation [29]).

F Score Precision Recall
Precision Recall

1 2= × ×
+

 (29)

Fig. 11 shows the F1-score reached for each 
emotion class, with x-axis values ranging from 0.0 
to 1.0. The emotions are divided into five categories: 
angry, none, happy, calm, and fearful. The F1-score for 
each class is as follows: angry 99%, none 90%, happy 
97%, calm 98%, and fearful 98%.

4.8. Recall for Each Class
Recall, also known as sensitivity or true positive 

rate, is a metric that measures a model’s ability to 
accurately identify all relevant instances in a dataset. 
It is highly useful for reducing false negatives 
(Equation [30]).

Fig. 9. Performance metrics

Fig. 11. F1-score for each class

Fig. 10. Precision for each class
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Recall TP
TP FN

�
�

 (30)

It is vital in situations when missing a positive 
instance is more expensive or significant than 
mistakenly identifying a non-positive example.

Fig. 12 depicts the recall scores for each emotion 
class, with x-axis values ranging from 0.0 to 1.0. The 
emotions are classified into five types: angry, none, 
happy, calm, and fearful. The recall for each class is 
as follows: angry 99%, none 99%, happy 97%, calm 
98%, and fearful 96%.

4.9. Comparative Analysis
This section demonstrates that the suggested 

methodology outperforms alternative models 
with fewer parameters, such as logistic regression 

Fig. 13. Comparative analysis 
Abbreviations: DTC: Decision tree classifier; KNN: K-nearest neighbor; LR: Logistic regression

Fig. 12. Recall for each class
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(Luna-Jiménez et al., 2021), decision tree classifier 
(Amartya & Kumar, 2022), and K-nearest neighbors 
(Subbarao et al., 2021).

Table 1 and Fig. 13 compare the performance of 
Marathi SER algorithms in terms of accuracy, F1-score, 
specificity, sensitivity, precision, and recall, demonstrating 
their usefulness. The logistic regression model achieved 
35% accuracy, 38% F1-score, 45% specificity, 85% 
sensitivity, 60% precision, and 35% recall. The decision 
tree classifier model performed better, with an accuracy 
of 82%, an F1-score of 84%, a specificity of 99%, a 
sensitivity of 99%, a precision of 90%, and an 83% 
recall. The K-nearest neighbors approach achieved 80% 
accuracy, 82% F1-score, 99% specificity, 99% sensitivity, 
85% precision, and 83% recall. In contrast, the proposed 
technique surpassed all other models, with 98% accuracy, 
98% F1-score, 99% specificity, 99% sensitivity, 98% 
precision, and 98% recall.

5. Conclusion
The study’s objectives are effectively addressed 

by the suggested methodology for SER in Marathi, 
which overcomes the shortcomings of current 
approaches and captures the distinctive grammatical 
and emotional subtleties of Marathi speech. The model 
attains remarkable performance metrics, including 
98% accuracy, 98% F1-score, 99% specificity, 99% 
sensitivity, 98% precision, and 98% recall, using 
sophisticated signal processing, thorough feature 
extraction, and a novel classification strategy that 
combines an attentive DBN with an SVM. The study’s 
shortcomings offer the potential for further research, 
even if the methodology addresses important issues and 
establishes a new standard for SER in Marathi. These 
include adding more languages, improving real-time 
processing for mobile apps, strengthening resilience 
to various noise and acoustic conditions, incorporating 
multimodal data such as physiological signals and facial 
expressions, and utilizing innovative architectures like 
transformers to further improve performance.
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