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Abstract

Developing and evaluating a deep learning-based method to enhance satellite image resolution has emerged as a 
promising approach to address challenges posed by motion, imaging blur, and noise without modifying existing 
optical systems. This study utilized an enhanced super-resolution generative adversarial network (SRGAN) with 
ResNet-50 as the generator and a modified VGG-19 in the discriminator. The model was trained on remote sensing 
images from the Linear Imaging Self-Scanning imagery and compared with very deep super resolution, SRGAN, 
and enhanced SRGAN methods using the structural similarity index measure (SSIM) and peak signal-to-noise ratio 
(PSNR) as evaluation metrics. Utilizing an enhanced SRGAN with ResNet-50 and modified VGG-19 significantly 
improved satellite image resolution. The proposed method consistently outperformed conventional convolutional 
neural network- and generative adversarial network-based super-resolution techniques. Across three test datasets, the 
method achieved SSIM scores as high as 0.862 and PSNR scores of 33.256, 32.886, and 34.885, demonstrating its 
superior ability to preserve image properties and enhance resolution. The incorporation of perceptual loss alongside 
pixel loss contributed to improved visual quality, making the approach particularly effective in maintaining fine 
details and naturalistic high-frequency characteristics.

Keywords: Generative Adversarial Network, Linear Imaging Self-Scanning Image, Peak Signal-to-Noise Ratio, 
ResNet-50, Structural Similarity Index Measure, Super Resolution

1. Introduction
Super-resolution (SR) reconstruction is a 

technology that generates high-resolution (HR) images 
from a sequence of low-resolution (LR) images using a 
particular algorithm, all without altering the settings of 
the imaging hardware (Adarsh et al., 2020). Ultra-high-
definition television, emergency event monitoring, 
target identification and localization, military precision 
targeting, battlefield environment surveillance, and 
medical image diagnosis are just a few of the many 
applications of image SR reconstruction technology in 
both civilian and military sectors (Wang et al., 2022).

Spatial resolution, the lowest discernible unit size 
or dimension in remote sensing images, is a measure 
of the image’s ability to identify ground target features 

(Han et al., 2023). Finer target identification is made 
possible by higher spatial resolution, suggesting that 
remote sensing photographs include a greater amount of 
information about ground objects. However, attaining 
higher spatial resolution solely through hardware 
advancements is difficult due to the downsampling 
effects of imaging sensors and various factors that 
cause deterioration in satellite image processing. 
These difficulties result in high development costs and 
lengthy hardware iteration cycles.

Nonetheless, by reconstructing HR images 
from LR but easily accessible images, image SR 
technology offers an affordable means to acquire 
HR images (Sui et al., 2023). Conventional SR 
reconstruction approaches, including interpolation 
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and prior information-based reconstruction, possess 
limitations. Interpolation techniques, such as bilinear 
and bicubic interpolation, perform well in real time 
but suffer from observable edge effects and poor detail 
recovery performance (Sui et al., 2023; Wang et al., 
2023; Zhang et al., 2022). Reconstruction techniques 
based on prior knowledge often rely on constraints 
such as maximal a posteriori probability and iterative 
back-projection; however, these methods are 
computationally costly, have limited applicability, and 
exhibit poor generalizability (Bu et al., 2024; Dong 
et al., 2022; Haut et al., 2018).

As deep learning techniques advance, single-
image SR techniques based on them outperform 
conventional methods in remote sensing applications 
and demonstrate wide-ranging utility (Khan et al., 
2023; Pang et al., 2023). For example, the SR 
convolutional neural network (SRCNN) model applies 
non-linear mapping to extract LR image features for 
reconstruction (Wang et al., 2023). However, SRCNN’s 
limitations include its single-scale applicability, slow 
training convergence, and shortcomings in handling 
various image contents. To overcome these challenges, 
W. This innovative approach significantly enhances 
the model’s adaptability, training speed, and capacity 
to capture intricate image nuances, addressing the 
shortcomings of SRCNN effectively.

The advent of VGG networks has led to the 
widespread use of deeper network models (Shi et al., 
2023). Residual networks (ResNet) (Wang et al., 2023), 
offer a solution to the gradient-vanishing issues in 
deep networks. A very deep SR (VDSR) model is used 
by incorporating ResNet to extract high-frequency 
information residuals and capture more image detail 
information (Frizza et al., 2022). Further innovations, 
such as multiscale ResNet (Zhang et al., 2022), 
cascading ResNet, and enhanced ResNet (Liu et al., 
2022), fully utilize low-level features with multiscale 
residual blocks for feature extraction and fusion.

The residual channel attention network (Tang 
et al., 2022) is introduced as a mean of integrating 
attention processes into the SR field, and the generative 
adversarial networks (GANs) (Wang et al., 2021) are 
developed through advancements in deep learning. To 
address issues with excessively smooth reconstructed 
images, a SR generative adversarial network (SRGAN), 
which introduced perceptual loss and utilized the 
GAN framework for adversarial training, was 
introduced (Zhang et al., 2021). The more realistic 
textures produced by enhanced SRGAN (ESRGAN) 
outperformed those of SRGAN (Wang et al., 2024). 
Several algorithms, including SRGAN (Min et al., 
2024), extended regularized adversarial GAN (Lei 
et al. 2017), and transferred GAN (He et al., 2022; 
Jiang et al., 2018; Li et al., 2022; Wang et al., 2022; 
Veganzones et al., 2016), have been developed for 

use in remote sensing applications. These algorithms 
combine multi-loss training techniques, semantic 
segmentation, and attention mechanisms to enhance the 
reconstruction of remote sensing images. Furthermore, 
research on resolution enhancement extends to other 
types of remote sensing images, including multisource 
image fusion (Dileep et al., 2024; Jayanth et al., 2025) 
and multispectral imaging (Ravikiran et al., 2024).

Recent advancements in unsupervised 
hyperspectral image SR have significantly enhanced 
the reconstruction of HR images without requiring 
paired training data. Li et al. (2025) proposed an 
enhanced deep image prior network that leverages 
network structure as an implicit prior to guide 
reconstruction. The model-informed multistage 
unsupervised network integrates degradation 
models into a multistage architecture for progressive 
refinement (Li et al., 2024). Meanwhile, the X-shaped 
interactive autoencoders utilize cross-modality mutual 
learning between spectral and spatial domains, while 
the model-guided coarse-to-fine fusion network 
applies a coarse-to-fine reconstruction strategy guided 
by physical priors. These approaches contribute 
to improved spatial-spectral fidelity in real-world 
applications.

Despite the remarkable achievements of GANs 
in image reconstruction and style transfer, challenges 
persist in their training process, such as mode collapse 
and gradient vanishing. Moreover, the majority of 
current techniques use pixel-level loss functions, such 
as mean squared error (MSE), potentially resulting in 
excessively smooth reconstructed images devoid of 
high-frequency information. Given the intricacy of 
scenes and the variety of target attributes in remote 
sensing photographs, the qualities of actual remote 
sensing datasets must be considered throughout the 
reconstruction process.

The generator in our single-frame SRGAN 
framework is designed using the ResNet-50 
architecture, chosen for its strength in training deep 
networks via residual learning. This helps mitigate 
issues such as vanishing gradients and supports the 
learning of complex, high-level features. In this 
implementation, the generator receives an LR satellite 
image and a random noise vector as inputs. These are 
concatenated to form a rich input space that combines 
deterministic and stochastic components. This fusion 
enables the network to produce more realistic and 
varied HR images (Dileep et al., 2025). The core of 
the generator consists of several residual blocks, each 
containing convolutional layers, batch normalization, 
and rectified linear unit (ReLU) activations. The skip 
connections in these blocks facilitate the retention 
of low-level features while capturing high-level 
abstractions, helping to preserve spatial and textural 
details (Li et al., 2023).
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Following feature extraction, the generator 
uses upsampling layers—typically transposed 
convolutions—to increase the spatial resolution of the 
feature maps. The final output is produced through 
convolutional layers that refine these upsampled 
features into a coherent HR image. On the other hand, 
a discriminator is built upon a modified VGG-19 
architecture, which is well-regarded for its effectiveness 
in perceptual feature extraction. The VGG-19 network 
is pre-trained and adapted to serve as a binary classifier 
within the GAN framework, distinguishing between 
real HR images and those generated by the network. 
Its deep yet straightforward structure makes it ideal 
for identifying fine-grained visual differences, thereby 
enhancing the adversarial training process and helping 
the generator improve the realism of its outputs (Li 
et al., 2023).

In this work, the input image passes through a 
series of convolutional layers with ReLU activations, 
interleaved with max pooling operations to 
progressively extract higher-level features. The deep 
convolutional structure helps the discriminator capture 
fine-grained texture patterns and global structures, 
both of which are essential for assessing image 
realism. After convolutional feature extraction, the 
output is flattened and passed through multiple dense 
layers with LeakyReLU activations, allowing the 
network to model more complex decision boundaries. 
The final layer uses a sigmoid function to produce a 
probability score indicating whether the input image is 
real or generated.

By combining the perceptual strength of VGG-19 
with a GAN setup, the discriminator plays a crucial 
role in guiding the generator to produce visually 
convincing HR images. This adversarial training setup 
encourages the generator to create outputs that are 
not only structurally accurate but also perceptually 
indistinguishable from real images.

In conventional image SR tasks, loss functions, 
such as MSE and mean absolute error, are commonly 
used to measure the pixel-wise differences between 
the generated and ground truth images. However, 
while these losses are mathematically straightforward 
and encourage the generated image to be numerically 
close to the target, they often lead to overly smooth 
outputs that lack high-frequency details and perceptual 
sharpness, especially in complex images, such as 
satellite imagery, where texture and structure are 
critical.

To address this limitation, perceptual loss is 
introduced. Unlike conventional pixel-level loss 
functions, perceptual loss evaluates the difference 
between high-level feature representations of the 
generated and ground truth images, extracted from a 
pre-trained deep convolutional network (typically a 
network like VGG-19). These feature maps capture 

semantic content, texture, and structural patterns that 
align more closely with how humans perceive image 
quality.

By minimizing perceptual loss, the generator is 
guided to produce images that are not only numerically 
similar but also visually and structurally closer to real 
HR images. This results in outputs that retain finer 
details, sharper edges, and more natural textures.

Furthermore, current SR techniques may 
not generalize well to new targets and situations, 
necessitating training methods and model designs 
that explicitly improve resilience and generalization. 
To address these challenges, modifications to the 
GAN were implemented, specifically by adding 
ResNet-50 in the generator network and VGG-19 in 
the discriminator model. The modifications are as 
follows:
•	 To enhance channel efficiency, the generator 

network was modified by switching out its basic 
residual blocks with bottleneck blocks from 
ResNet-50 and extracting the features that are 
important for SR

•	 Improved skip connections make information 
flow between layers more effective and aid in 
the reconstruction of HR features. In order to 
improve feature blending and guarantee reliable 
classifier performance, an additional fully 
connected (FC) layer was implemented

•	 Effective discriminative feature extraction was 
improved by fine-tuning VGG-19 within the 
discriminator.

The article’s structure is as follows: Section 2 
outlines the methodology, detailing the GAN; Section 
3 presents the results and discussion along with a 
comparison with other algorithms using different 
datasets; finally, Section 4 provides a brief conclusion.

2. Methodology
In SR, GANs have become a dominant approach, 

providing a strong framework for converting LR 
images into HR images. The SRGAN architecture 
typically consists of a generator and a discriminator, 
both are essential components in the creation and 
assessment of super-resolved images.

2.1. General SRGAN Architecture
The algorithm for the SRGAN is as follows:
(i) Input: LR image
(ii) Architecture: Series of convolutional layers 

without multiscale residual blocks, followed by 
batch normalization and activation functions

(iii) Upsampling: The generator aims to learn the 
mapping from an LR image to an SR image
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(iv) Output: SR image with dimensions rW × rH × C, 
where r is the upsampling factor

(v) The complete generator function is:

G(LR image) = SR image.

When the generator network transitioned to 
ResNet-50, the bottleneck blocks in this method 
generator model took the place of the basic residual 
blocks. The discriminator model evolved concurrently 
into a condensed version of the VGG-19 network, 
retaining the first 16 layers and including an FC 
layer for enhanced functionality. Bottleneck blocks 
were used in the architecture, which used ResNet-50, 
to improve performance. Lowering the number of 
channels and increasing processing performance in 
deeper networks were made possible in large part by 
the bottleneck blocks. This design decision was crucial 
for handling the computing power requirements of 
deep network architectures.

The generator based on ResNet-50 comprised 
an input layer, ResNet blocks for feature extraction, 
upsampling layers to improve spatial resolution, and a 
final output layer that generates the HR image. Batch 
normalization, ReLU activation, and convolutional 
layers were combined to form the ResNet blocks. 
This study used bottleneck blocks to improve speed 
while generating SR using ResNet-50. Remarkably, 
when the stride was set to 1, neither the basic nor the 
bottleneck blocks performed downsampling. However, 
when the stride was set to 2, downsampling occurred 
prior to the addition operation. The main purpose 
of the convolution kernel was to reduce the number 
of channels that are handled later in the module. 
With fewer parameters in the channel, this reduction 
maximized its use.

A pooling layer was layered following a 
conventional convolutional layer in the first construction 
layer. The three remaining bottleneck blocks were 
then integrated into the second construction tier. 
Downsampling residual bottleneck blocks was the first 
step in the third, fourth, and fifth construction layers, 
followed respectively by three, five, and two residual 
bottleneck blocks. After processing 16 bottleneck 
blocks for feature extraction, pixel-shuffle layers were 
used to improve the resolution twice. Crucially, this 
optimization happened deliberately at the end of the 
network layers, helping to maximize resolution while 
reducing the amount of processing resources used.

The architecture of the generator was carefully 
designed to learn the complex mapping from LR 
images to SR images. The generator was made up of 
a sequence of convolutional layers without multiscale 
residual blocks. It also included activation functions 
and batch normalization. Increasing the spatial 
resolution of LR images was the main goal, and an 
SR image with dimensions rW × rH × C—where r 

denotes the upsampling factor—is the result. The 
discriminator functioned to separate the generated 
SR images from genuine HR images at the same 
time. Convolutional layers were used in conjunction 
with batch normalization and activation functions 
to generate a binary classification that indicates the 
likelihood that an image is a true HR representation.

A wide range of loss functions is necessary 
for the SRGAN to perform well. By measuring the 
generator’s realism, the adversarial loss (advLadv) 
creates a competitive environment between the 
generator and discriminator. Perceptual dissimilarity 
between produced and HR images was measured by the 
perceptual loss (Lperceptual), ensuring that important 
features are retained. Furthermore, the pixel-by-pixel 
variations were quantified by the MSE, which offers a 
more detailed evaluation of fidelity.

A complex feature extraction technique was 
integrated into the generator’s design using ResNet-50. 
The LR satellite image was represented by Ilow in 
the input layer of the latent space, while z provided a 
random noise vector. The first input, x0, was formed 
by concatenating Ilow and z. To extract features, a set 
of ResNet blocks—each consisting of convolutional 
layers, batch normalization, and ReLU activation—
was combined. The ResNet blocks’ skip connections 
promoted gradient flow, reducing the effects of 
disappearing gradients. The next step involved an 
upsampling layer that used transposed convolutions or 
other methods to improve spatial resolution. The final 
output layer, which was composed of convolutional 
layers with a suitable activation function (tanh), 
yielded the HR image I^high. This output resulted from 
the upsampled features, represented as xupsampled.

The residual learning paradigm was embodied 
by the ResNet block, which was defined as x + 
Convolution(ReLU(BatchNorm(Convolution(x)))). 
The trainable parameters ϸG, representing the weights 
of the convolutional layers, were encapsulated in the 
generator function as a whole, represented as G(Ilow; 
θG) = I^high. Essentially, the proposed SRGAN 
architecture incorporates ResNet-50’s ability to 
smoothly capture complex features, offering a strong 
foundation for producing realistic and detailed HR 
satellite images. The design advances the state-of-
the-art in SR image synthesis by achieving a delicate 
balance through the complex interplay of the generator, 
discriminator, and the stated loss functions.

2.2. Generator Architecture with ResNet-50
The algorithm for the generator architecture is as 
follows:
(i) Input layer (latent space): Ilow is the input LR 

satellite image, and z is a random noise vector.
•	 x0 = Concatenate(Ilow, z)
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(ii) ResNet blocks:
•	 Integrate several ResNet blocks for feature 

extraction.
•	 Each ResNet block consists of 

convolutional layers, batch normalization, 
and ReLU activation.

•	 The skip connections help in gradient flow.
•	 Xi = ResNetBlock(xi − 1), i = 1, 2,…, n.

(iii) Upsampling layers:
•	 Upsample the features to increase spatial 

resolution.
•	 Use transposed convolutions or other 

upsampling techniques.
•	 Xupsampled = Upsample(xn)

(iv) Output layer: Produce the final HR image using 
convolutional layers with a suitable activation 
function (e.g., tanh).
•	 I^high = Convolution(xupsampled)

(v) Each ResNet block can be defined as follows: 
ResNetBlock(x) = x + Convolution(ReLU(Batch 
Norm(Convolution(x))))

where Convolution refers to a 3 × 3 convolutional 
layer, BatchNorm is batch normalization, and ReLU is 
the ReLU activation function.
(vi) Complete generator function:

G(Ilow; θG) = I^high

Where θG represents the weights of the 
convolutional layers in the generator.

This architecture leverages ResNet-50’s ability 
to capture intricate features, helping the generator 
produce more realistic and detailed HR satellite 
images.

2.3. Discriminator with VGG-19
The algorithm for the discriminator with VGG-19 is 
as follows:
(i) Input: Real HR images (IHR) and generated SR 

images (ISR).
(ii) Architecture: Convolutional layers followed by 

batch normalization and activation functions.
(iii) Objective: Discriminate between real and 

generated images.
(iv) Output: Binary classification indicating the 

probability of being a real HR image.
(v) Complete discriminator function:

 (high)→Binary ClassificationD(Ihigh; θD)→ 
Binary Classification

With a VGG-19 architecture, the discriminator 
functions as a discriminating agent in the GAN, 
especially for SR tasks. This discriminator is equipped 
with a complex architecture inspired by VGG-19 and 
incorporates an advanced method to discriminate 
between generated SR and genuine HR images.

The discriminator performs feature extraction, 
discriminative analysis, and classification, leveraging 
the VGG-19 architecture as its base. The discriminator 
consists of six block structures, each composed 
of convolutional and FC layers, enabling feature 
extraction and classification across 19 layers. Most 
importantly, it uses the first 16 layers to generate 
feature maps that capture important details from the 
input images.

After an image is input into the discriminator, 
it undergoes a transformation process involving 
discriminative analysis and feature extraction. Initially, 
the image passes through the first convolution block, 
which utilizes a 3 × 3 kernel size and a stride. To reduce 
computational complexity and prevent overfitting, the 
convolved image is downsampled using max pooling 
procedures.

This process progresses through subsequent 
blocks corresponding to the second, third, fourth, and 
fifth phases of the network, where deeper convolutions 
hone and enhance the characteristics that have been 
recovered. When the image reaches the FC layers, 
it experiences a significant metamorphosis into a 
vector. The next step involves passing this vector 
across thick layers, each with 1,024 neural units. 
Here, the discriminator’s capacity to distinguish 
minute variations between generated and actual 
images is improved by the addition of non-linearity 
to its decision-making process using the LeakyReLU 
activation function. As the image propagates through 
the discriminator, it is subjected to a number of 
adjustments to extract complex characteristics and 
identify minute distinctions between generated SR 
and genuine HR images. The discriminator examines 
textures, structures, and general appearances using 
max pooling and convolutional procedures to cultivate 
a robust discriminative capability.

When classification reaches its final stage, the 
discriminator thoroughly assesses the converted vector. 
The last dense layer has an output dimension of two, 
denoting true or false depending on the classification 
outcomes. A sigmoid activation function is applied to 
produce a probability score for each image, classifying 
the image as either HR or SR. Notably, the sigmoid 
layer is preceded by an extra-thick FC7 layer that 
improves the discrimination between SR images 
and ground truth images, as well as enhances the 
discriminator’s capacity to aggregate features from 
HR images.

2.4. Discriminator with VGG-19
The algorithm for the discriminator with VGG-19 is 
as follows:
(i) Input: LR or SR image (I).
(ii) Initialization:
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•	 Load pre-trained modified VGG-19 model 
weights.

•	 Extract the convolutional and FC layers for 
feature extraction and classification.

(iii) Feature extraction:
•	 Pass the input image through the first 

convolution block:
 (a) F1 = Conv(I, W1)
 (b) A1 = ReLU(F1)
•	 Perform max pooling:
 P1 = MaxPool(A1)
•	 Iterate through subsequent convolution 

blocks.
•	 Apply convolutions and activations:
 (a) Fi = Conv(Pi − 1, Wi)
 (b) Ai = ReLU(Fi)
•	 Utilize max pooling:
 Pi = MaxPool(Ai)

(iv) Dense layer transformation:
•	 Flatten the feature maps into a vector:
 V = Flatten(Pn)
•	 Pass the vector through dense layers:
 (a) Z1 = V⋅Wfc1 + bfc1
 (b) Afc1 = LeakyReLU(Z1)
 (c) Z2 = Afc1⋅Wfc2 + bfc2
 (d) Afc2 = LeakyReLU(Z2)

(v) Classification: Pass the transformed vector 
through the final dense layer:
(a) Z3 = Afc2⋅Wfc3 + bfc3
(b) Afc3 = Sigmoid(Z3)

(vi) Output: Probability score indicating the 
authenticity of the input image as either LR or 
SR.

2.5. Loss Function
The two primary components of the loss for 

single-image SR (lSSR) are the regularization loss and 
the perceptual loss.
(i) Perceptual loss (lperceptual): In a perceptual 

space, perceptual loss quantifies the difference 
between the generated SR images and the HR 
ground truth images. It is frequently calculated 
using a feature similarity metric between the 
feature representations of the HR and SR 
images taken from a pre-trained deep neural 
network, such as the MSE or cosine similarity. 
The perceptual loss may be mathematically 
represented as follows:

( )( ) 2

21

1 ( )
=

= Φ −Φ∑
N

i i
HR LR

i
lperceptual I G I

N
 (1)

Where N is the total number of training samples, 
G stands for the SR generator model, ϕ for the feature 
extractor, and IHR

(i) and ILR
(i) for the i-th HR and LR 

input images, respectively.

(ii) Regularization loss (lregularization): Overfitting 
is avoided, and favorable features in the resulting 
SR images are encouraged by regularization 
loss. Typical regularization methods include 
adversarial loss to impose realism, total variation 
regularization to enhance smoothness, and L1 or 
L2 regularization on the generator’s parameters. 
The regularization loss can be expressed 
mathematically as follows:

 = = ∑reg
P

lregularization
θ

λ θ  (2)

Where θ stands for the generator model’s 
parameters, P is the regularization norm (e.g., P = 1 
for L1 regularization and P = 2 for L2 regularization), 
and lregularization is the regularization parameter.

The total loss for the single-image SR is then 
computed as the weighted sum of the perceptual loss 
and regularization loss:

lSSR = λperceptual⋅lperceptual + λregularization 
⋅lregularization

Where λperceptual and λregularization are 
hyperparameters that control the relative importance of 
the perceptual and regularization terms, respectively.

3. Results and Discussion
3.1. Dataset

In this work, a new dataset is introduced, 
consisting exclusively of images captured by the 
Linear Imaging Self-Scanning (LISS) satellite sensor, 
as shown in Fig. 1. The LISS sensor provides fine-
grained spatial resolutions of 24 m and 5 m, while 
capturing images across a 140-km orbital sweep. 
Every 24 days, its operational cycle is repeated. In 
contrast, the Advanced Wide Field Sensor (AWiFS) 
offers a slightly poorer spatial resolution of 56 m but 
spans an even larger orbital sweep of 740 km. AWiFS 
also features a more frequent revisit cycle of 5 days.

The original LISS images had a pixel resolution 
of 1956 × 1983. These images were randomly cropped 
to 86 × 86 to generate training and validation datasets. 
After that, the cropped images underwent image 
degradation and were downsampled by a factor of four 
to produce an LR image set. This LR set was paired 
with the original image to form LR–HR training pairs. 
Finally, data augmentation techniques, such as rotation 
and staggering, were used to augment the dataset.

3.2. Training Process
The proposed architecture was trained in an 

experimental setup over 40 training epochs with a 
batch size of 32 and a learning rate of 0.001. Training 
GAN-type networks presents inherent challenges, 
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such as instability and mode collapse. To address 
these issues, a halting standard was introduced. In 
particular, if a predefined loss threshold of 0.001 
was not achieved after 400 epochs, training was 
terminated. The model loss was monitored after each 
epoch, and the checkpoint with the lowest loss was 
preserved. By acting as a benchmark for subsequent 
epochs, this checkpoint ensured the model maintained 
optimal performance. The goal of this approach was to 
reduce instability, prevent premature convergence, and 
enhance model performance.

Despite some fluctuations, the loss trend 
exhibited a steadily dropping trajectory, suggesting 
that the model was improving and converging. Notably, 
the proposed model showed improved stability and 
resilience compared to conventional GAN networks, 
where variations in the loss function could reflect 
training collapse and intrinsic instability. To produce 
LR images, each HR image was downscaled by a 
factor of four. The LR images were 32 × 32 pixels 
in size, while the HR images were 128 × 128 pixels. 
Training on smaller image patches enabled the model 
was able to concentrate on fine-grained local textures, 
structural components, and object characteristics in 
remote sensing images. This method facilitated the 
extraction of crucial information and patterns needed 
for accurate SR reconstruction. Additionally, using 
smaller-sized images reduced memory utilization and 
computational complexity, contributing to a more 
efficient training process.

3.3. Dataset Splitting Strategy
Three datasets were used, covering varied remote 

sensing scenarios. Each dataset was split into 70% 
for training, 15% for validation, and 15% for testing, 
ensuring the model was evaluated on unseen data to 
assess generalization performance.
The training details are as follows:
•	 Epochs: Trained for 40 epochs (with early 

stopping after 400 if loss <0.001 not achieved)

•	 Batch size: 32
•	 Learning rate: 0.001
•	 Loss monitoring: Checkpoints were saved based 

on the minimum validation loss to prevent 
overfitting and mode collapse

•	 Downscaling: HR images (128 × 128) were 
downscaled to 32 × 32 for training, reducing 
memory usage while retaining crucial local 
features.

In the objective evaluation shown in Table 1, two 
metrics, including structural similarity index measure 
(SSIM) and peak signal-to-noise ratio (PSNR), were 
chosen to quantitatively assess the quality of the super-
resolved images.

3.4. Qualitative Analysis

The proposed method was compared to a CNN-
based method (referred to as VDSR) and two GAN-
based methods (SRGAN and ESRGAN), which 
integrate perceptual loss through fusion methods to 
enhance visual quality (Fig. 2). These SR algorithms 
were all meticulously optimized on the training set 
for fair comparison. The proposed method primarily 
relies on a CNN-based approach with a generator 
network, trained using pixel loss to independently 
reconstruct HR images from LR images. It comprises 
both generator and discriminator networks within 
a GAN model, incorporating perceptual loss for 
improved visual quality. However, it may lack 
human perception due to its sole reliance on pixel 
loss.

The evaluation compared the proposed method 
against conventional single-image SR algorithms 
across three test sets. Two different networks 
(ResNet-50 and modified VGG-19) were used in the 
deep ResNet–GANs approaches, ensuring a balanced 
analysis. The proposed method generates realistic and 
visually appealing results closely resembling natural 
images, attributed to innovative algorithm design 

Fig. 1. Original images. (A) Ground truth images. (B) Low-resolution images. (C) High-resolution images

B CA
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techniques that balance visual quality optimization 
and artifact minimization.

3.5. Quantitative Analysis

In this study, two metrics were employed to 
quantitatively evaluate the SR results: PSNR and SSIM.

A comparison of the PSNR scores for several 
SR techniques—VDSR, SRGAN, ESRGAN, and the 
suggested method—across three different datasets is 
shown in Table 2.
(i) Interpretation of the PSNR metric: A quantitative 

indicator of image quality; a greater PSNR value 
denotes a smaller disparity between the original 
and reconstructed images

(ii) Superiority of the proposed technique: The PSNR 
scores obtained by the proposed approach are 

consistently higher than those obtained by VDSR, 
SRGAN, and ESRGAN on all three datasets

(iii) Dataset-specific performance: Extensive PSNR 
values for every dataset demonstrate the enhanced 
image quality preservation performance of the 
proposed approach

Table 1. Different objective evaluation metrics
Parameter Equation Explanation
Peak 
signal-to-noise 
ratio (PSNR)

PSNR=10 log10 (MAX2/MSE)
where MAX is the maximum pixel value of the 
original image data, and mean squared error 
(MSE) is the average of the squared deviations 
between the comparable pixel values of the 
original and super-resolved images.

A key statistic for assessing the quality of super-resolved 
images in relation to their original counterparts is the 
PSNR. In remote sensing, the PSNR is a vital measure 
of the performance of super-resolution techniques 
in preserving image information and reducing 
reconstruction mistakes. A higher PSNR value indicates 
a better fidelity and less distortion between the original 
and super-resolved images.

Structural 
similarity index 
(SSIM)

SSIM (x, y) = (2μxμy+c1) (2σxy+c2)/ 
(μx2 + μy2+c1) (σx2 + σy2+c2)
where x and y represent the original and 
super-resolved images, respectively; μx and μy 
denote the mean intensity of x and y images; 
σx and σy are the standard deviations of x and y 
images; σxy represents the covariance of x and 
y images; and c1 and c2 are constants added 
to avoid instability when the denominator 
approaches zero.

The SSIM metric compares the brightness, contrast, 
and structure of two images to determine their 
similarity. It yields a number between 0 and 1, where 
0 represents total dissimilarity and 1 represents 
perfect similarity. As SSIM accounts for aspects of 
human visual perception, unlike standard metrics, 
such as MSE or PSNR, it is more appropriate for 
evaluating image quality changes that impact human 
perception. This makes it especially pertinent to 
remote sensing applications.

Fig. 2. Comparison of reconstructed details in distinct small targets (i and ii): (A) original image; (B) images 
reconstructed using VDSR; (C) images reconstructed using SRGAN; (D) images reconstructed using ESRGAN; 

and (E) images reconstructed using the proposed algorithm in this study
Abbreviations: ESRGAN: Enhanced super-resolution generative adversarial network; SRGAN: Super-resolution 

generative adversarial network; VDSR: Very deep super-resolution

B C D EA

Table 2. Average PSNR/dB for different algorithms
Dataset VDSR SRGAN ESRGAN Proposed 

method
1st dataset 28.345 26.484 32.896 33.256
2nd dataset 29.275 26.784 31.569 32.886
3rd dataset 29.568 29.725 32.451 34.885
Abbreviations: ESRGAN: Enhanced super-resolution 
generative adversarial network; PSNR: Peak 
signal-to-noise ratio; SRGAN: Super-resolution generative 
adversarial network; VDSR: Very deep super-resolution.
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(iv) Low difference in the first dataset: The proposed 
approach produces a PSNR of 33.256 in the first 
dataset, demonstrating a small difference between 
the reconstructed and original images, and a higher 
level of image quality than the other methods

(v) Consistent performance in the second dataset: 
The proposed method consistently reduces 
disparities in image reconstruction, as seen by 
its high PSNR across datasets, with a score of 
32.886 in the second dataset

(vi) Highest PSNR in the third dataset: The proposed 
method outperforms other methods in producing 
better image quality and fidelity, as evidenced by 
its PSNR value of 34.885, the highest in the third 
dataset

(vii) Implication of results: The higher PSNR values 
of the proposed method across all tested datasets 
indicate its usefulness and resilience in a range 
of settings, suggesting that it excels in reducing 
disparities between reconstructed and real 
images for improved image quality.

The average SSIM scores for the proposed 
method, VDSR, SRGAN, ESRGAN, and other SR 
methods across several datasets are shown in Table 3.
i. The SSIM compares the brightness, contrast, 

and structure of the reconstructed and original 
images; higher values within the range of [0,1] 
indicate better preservation of these features. Out 
of all the methods tested, the proposed method 
recorded the highest SSIM scores, demonstrating 
its superior ability to maintain image properties, 
including structural similarities, brightness, and 
contrast, during the SR process.

ii. In the first dataset, for example, the proposed 
method achieves an SSIM score of 0.862, 
indicating that it can maintain image properties 
more effectively than other methods. It also 
demonstrates outstanding performance in other 
datasets, as evidenced by the scores as high as 
0.833 in the second dataset and 0.899 in the third.

iii. The higher SSIM values of the proposed 
method across several datasets highlight its 
extraordinary performance in preserving image 

features, indicating its potential for producing 
high-quality SR outcomes with improved visual 
integrity.

4. Conclusion
In conclusion, this work introduces a novel 

approach utilizing ResNet-50 in the generator network 
of the stable SRGAN, alongside a modified VGG-19 
network in the discriminator. Through employing bypass 
branches and shortcuts in ResNet-50, the network 
effectively learns residuals and mitigates information 
loss during transmission. This design, combined with the 
enhanced feature extraction capabilities of the modified 
VGG-19 network, improves the overall performance of 
the SR process through preserving image properties and 
discerning between real and generated images.

The proposed method was compared against 
conventional single-image SR algorithms, including 
VDSR, SRGAN, and ESRGAN, across three datasets. 
The results consistently demonstrate the superiority of 
the proposed approach, as evidenced by higher SSIM 
and PSNR scores. For example, achieving an SSIM 
score of 0.862 in the first dataset signifies superior 
preservation of image properties compared to other 
methods. Furthermore, notable PSNR scores, such 
as 33.256, 32.886, and 34.885 across the datasets, 
highlight the capability of the proposed approach to 
maintain image quality and fidelity.

While the proposed approach demonstrates 
strong performance in terms of quantitative metrics 
and architectural innovation, there are a few areas 
that present opportunities for further enhancement. 
The use of deep networks, such as ResNet-50 and 
a modified VGG-19, while beneficial for feature 
extraction and residual learning, may introduce 
increased computational demands. The evaluation 
primarily relies on PSNR and SSIM scores; 
incorporating perceptual or user-centered assessments 
in future studies could provide a more comprehensive 
understanding of visual quality. Lastly, as with many 
GAN-based models, ensuring stable and efficient 
training across diverse conditions may benefit from 
further optimization and experimentation.

Future work should focus on enhancing both 
the efficiency and generalizability of the proposed 
approach. This includes exploring adaptive or hybrid 
loss functions—combining perceptual, adversarial, 
and contextual losses—to improve visual quality and 
structural fidelity. To support real-world applicability, 
evaluations should be extended to remote sensing tasks, 
such as land cover classification and object detection. 
Additionally, efforts should be made to develop 
lightweight architectures for resource-constrained 
environments and to incorporate domain adaptation 
techniques, enabling robust performance across 

Table 3. Average SSIM for different algorithms
Dataset VDSR SRGAN ESRGAN Proposed 

method
1st dataset 0.745 0.771 0.772 0.862
2nd dataset 0.725 0.774 0.702 0.833
3rd dataset 0.812 0.698 0.806 0.899
Abbreviations: ESRGAN: Enhanced super-resolution 
generative adversarial network; SRGAN: Super-resolution 
generative adversarial network; SSIM: Structural 
similarity index measure; VDSR: Very deep 
super-resolution.
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varying sensors, regions, and seasonal conditions. 
These directions aim to refine model effectiveness 
while broadening its scope and practical relevance.
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