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Abstract

Lung cancer is a leading cause of cancer-related mortality worldwide, and accurate detection of epidermal growth 
factor receptor mutations is essential for personalized treatment. However, non-invasive identification of these 
mutations remains challenging due to the complexity of clinical and morphological patterns. This study develops an 
adaptive boosting (AdaBoost)-based machine learning model for detecting lung cancer mutations using clinical and 
morphological data. The dataset consists of clinical and morphological attributes from 80 patients, which processed 
through comprehensive preprocessing steps, including imputation, outlier removal, and feature selection. One-hot 
encoding increased the feature count beyond the original 28, and analysis of variance was employed to retain the most 
relevant 33 features. AdaBoost was trained with optimized hyperparameters, including learning rate and the number 
of estimators, which were tuned using grid search to ensure robustness. The model’s performance was evaluated 
using an 80/20 train-test split and k-fold cross-validation to assess generalization capability. Experimental results 
demonstrated that AdaBoost outperformed other models, achieving an accuracy of 83% and an area under the curve 
of 0.90 after feature selection. The model maintained superior cross-validation scores compared to Naive Bayes, 
decision tree, K-nearest neighbors, and support vector machine, reinforcing its reliability in mutation detection. The 
study highlights the significance of preprocessing steps in improving classification performance and suggests that 
AdaBoost can serve as an effective, non-invasive tool for assisting clinical decision-making in lung cancer mutation 
detection.
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1. Introduction

Lung cancer is a leading cause of cancer-
related mortality, with early and accurate detection of 
genetic mutations playing a crucial role in optimizing 
treatment strategies (Rakesh & Baskar, 2024). Among 
these mutations, epidermal growth factor receptor 
(EGFR) mutations are particularly significant for 
targeted therapies (Wang et al., 2019). Traditional 
detection methods rely on invasive procedures such as 
tissue biopsies, which pose risks to patients and may 
not always be feasible (Kanan et al., 2024).

Advancements in machine learning (ML) offer 
promising non-invasive alternatives for mutation 
detection using clinical and morphological data (Yu 
et al., 2019). Various ML models, including support 

vector machines (SVM), decision trees, and K-nearest 
neighbors (KNN), have been applied in cancer 
diagnosis, but their performance often depends heavily 
on extensive feature engineering and preprocessing (Jain 
et al., 2024). Boosting algorithms, particularly adaptive 
boosting (AdaBoost), have demonstrated superior 
performance by combining multiple weak learners into 
a robust predictive model (Bushara et al., 2023).

This study leverages the AdaBoost algorithm to 
enhance the accuracy and sensitivity of EGFR mutation 
detection based on clinical and morphological features. 
Through rigorous preprocessing, including outlier 
removal, feature encoding, and analysis of variance 
(ANOVA)-based feature selection, we optimize the 
dataset for improved classification performance. The 
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effectiveness of AdaBoost is evaluated in comparison 
to other ML models, emphasizing its potential as a 
reliable, non-invasive alternative for assisting clinical 
decision-making in lung cancer mutation detection.

2. Related Work
The application of ML in lung cancer detection 

has been extensively explored, with various studies 
highlighting the effectiveness of traditional ML 
models in identifying cancerous mutations. Previous 
research has applied ML approaches such as SVM, 
decision trees, KNN, and ensemble techniques such 
as Random Forest in cancer classification (Maurya 
et al., 2024). These methods have demonstrated success 
in distinguishing cancer subtypes and predicting 
patient outcomes, but often require extensive feature 
engineering to enhance model performance (Li, 2023).

Boosting methods, particularly AdaBoost, 
have been increasingly recognized for their ability to 
enhance classification accuracy in medical applications 
by combining multiple weak learners into a strong 
predictive model (Gautam et al., 2024). Unlike deep 
learning techniques, which require large datasets and 
substantial computational resources, AdaBoost provides 
a more interpretable and computationally efficient 
approach, making it suitable for clinical applications 
with limited data availability (Jain et al., 2024).

Several studies have applied ML techniques in 
lung cancer detection using clinical and morphological 
data. For instance, Kwon et al. (2023) demonstrated 
that integrating multiple blood markers and clinico-
pathological features significantly improved 
classification performance (Kwon et al., 2023). 
Similarly, Wang et al. (2019) investigated the use of 
imaging and clinical attributes for mutation detection, 
showing that feature selection played a crucial role 
in model optimization (Wang et al., 2019). However, 
most prior research has focused on deep learning-
based models, such as convolutional neural networks 
(CNNs), for lung cancer diagnosis (Le et al., 2021). 
While CNNs have demonstrated high accuracy in 
radiomics-based studies, their black-box nature and 
high computational requirements limit their practical 
use in clinical settings (Kanan et al., 2024, p. 20).

In contrast, this study focuses on leveraging 
AdaBoost to detect EGFR mutations based on clinical 
and morphological features. The rationale for using 
AdaBoost over deep learning approaches lies in its 
ability to handle smaller datasets while maintaining 
high classification performance. In addition, AdaBoost 
enables easier interpretation of feature importance, 
which is crucial in clinical decision-making (Sachdeva 
et al., 2024). By incorporating feature selection 
techniques such as ANOVA, this study aims to further 
enhance model robustness and accuracy, addressing 

gaps in existing literature that often overlook the 
impact of feature selection on ML performance.

3. Research Methods
This research was designed as a predictive 

study aimed at detecting lung cancer mutations, 
specifically EGFR mutations, using ML on clinical 
and morphological data. The study involved several 
phases, as shown in Fig. 1, including data acquisition, 
preprocessing, feature selection, model development, 
and performance evaluation. By employing the 
AdaBoost algorithm, this study sought to improve 
mutation detection accuracy, leveraging its capacity 
to enhance predictive accuracy through boosting weak 
learners into a stronger predictive model.

This study employs the AdaBoost algorithm, an 
ensemble learning method that iteratively combines 
weak classifiers to create a more robust predictive 
model. As illustrated in Fig. 1, AdaBoost operates by 
assigning weights to training instances and adjusting 
them iteratively based on model performance. 
A properly referenced workflow diagram depicting 
this process is included to enhance comprehension.

3.1. Data Sets
The data set used in this study consists of clinical 

and morphological data collected from 80 lung 
cancer patients, initially comprising 28 features. To 
ensure data quality, several preprocessing steps were 
performed. Missing values in numerical features were 
addressed using KNN imputation, whereas categorical 
features underwent mode imputation to maintain data 
completeness. Outlier detection and removal were 
conducted using the interquartile range (IQR) method, 
minimizing the impact of extreme values that could 
potentially bias the model. In addition, categorical 
variables such as lobe location and emphysema type 
were transformed using one-hot encoding, which 
increased the total number of features beyond the 
initial 28. Feature selection was then performed using 
the ANOVA method, refining the feature set to 33 
relevant predictors.
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Fig. 1. General proposed method
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The boxplots in Fig. 2 depict the distribution of 
various features related to diabetic nephropathy, such 
as age, calcification, tumor location, and metastasis. 
“Age” is well-distributed with a median in the mid-
60s, whereas features such as “dimension” and 
“density” show minimal variability, suggesting limited 
diagnostic relevance. “Calcification” and “tumor 
location” exhibit greater variability, indicating potential 
significance in disease progression. Metastasis-related 
features, such as “liver” and “bone metastasis,” show 
rare occurrences with occasional outliers. Overall, the 
plots highlight patterns and anomalies that may aid 
in understanding the variability of clinical features 
associated with diabetic nephropathy.

3.2. Preprocessing

Data preprocessing is a crucial step in the data 
analysis workflow, aimed at preparing raw data into 
a cleaner and more usable form for analysis models 
or ML. This process includes various techniques, such 
as data cleaning to remove missing values, handling 
outliers, data transformation – which may involve 
converting data types or encoding categorical variables 
into numeric formats – and feature selection. The main 
goal of preprocessing is to enhance data quality so that 
the model used can produce more accurate results, 
while also reducing the risk of bias and errors in further 
analysis (Benhar et al., 2020).

Fig. 2. Boxplot of the distribution of several features in data sets
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3.2.1. Data Cleansing
The data were first checked for duplicates, and no 

duplicate entries were found. Next, an assessment of 
missing values revealed that several features contained 
missing data, requiring either removal or imputation 
to ensure data quality. To streamline the dataset for 
modeling, the features “no” and “test number” were 
removed, as they were not relevant to the modeling 
process. In addition, patient records with missing 
values across nearly all features were excluded, 
resulting in the removal of four patient records due to 
the high proportion of missing data.

3.2.2. Outlier Detection
Outlier detection using the IQR method, also known 

as the Tukey method, is a highly effective technique for 
identifying and removing extreme values from a dataset. 
This method is based on the IQR measurement, which 
is the range between the first quartile (Q1) and the third 
quartile (Q3), encompassing the central portion of the 
data distribution (Berger & Kiefer, 2021). This process 
helps produce more accurate models and analysis results, 
especially in situations where data distributions are non-
normal or highly variable. The IQR formula, along with 
the Tukey method for outlier identification, is shown in 
Eq. (1), Eq. (2), and Eq. (3).

IQR = Q3−Q1 (1)

Outlier > Q3 + 1.5 × IQR (2)

Outlier > Q1 + 1.5 × IQR (3)

3.2.3. One-Hot Encoding
Performing one-hot encoding for several 

features, such as lobe location, emphysema type, 
emphysema location, lymphadenopathy, pulmonary 
nodule, and pleural effusion, can yield new features 
that are more relevant and have a higher correlation 
with EGFR mutation. Results are improved when 
one-hot encoding is applied. To handle categorical 
variables, we applied one-hot encoding, which 
converts each categorical feature into multiple binary 
variables, ensuring compatibility with ML models. In 
this study, categorical features such as lobe location 
and emphysema type were transformed using this 
method.

3.2.4. Feature Selection
Feature selection plays a crucial role in 

improving model performance by eliminating 
irrelevant or redundant features. In this study, 
categorical variables such as lobe location and 
emphysema type were transformed using one-hot 

encoding, which expanded the feature space. To 
reduce dimensionality and retain only the most 
relevant predictors, the ANOVA method was applied. 
ANOVA evaluates the statistical significance of each 
feature in relation to the target variable, ensuring that 
only features with strong discriminative power are 
selected. As a result, the feature set was reduced to 
33 features, which were subsequently used for model 
training and evaluation.

Feature selection using the ANOVA method is a 
technique that identifies features that have a significant 
impact on the target variable in a dataset. ANOVA is 
applied to compare the means of groups generated 
by different features to determine if these differences 
are substantial enough to influence the target variable 
(Nasiri & Alavi, 2022). Features showing significant 
differences are considered important and are retained 
in the model, whereas non-significant features may 
be removed to simplify the model and reduce the risk 
of overfitting. This method is particularly useful in 
regression or classification analysis, where selecting 
the right features can significantly enhance model 
accuracy and computational efficiency. The ANOVA 
formula involves the total sum of squares (SST) and 
sum of squares between (SSB) as shown in Eq. (4) and 
Eq. (5).

SST X X
i

N

i= −( )
=
∑
1

2

 (4)

Remark:
Xi: i

th data point
X : Means of all data

N: Total number of observations for all groups

SSB n X X
j

k

j j= −( )
=
∑
1

2

 (5)

Remark:
nj: Number of observations (data points) in group j
k: Number of groups
n1, n2,…nk: Sample size of each group
Furthermore, the F-statistics in ANOVA is a 

measure used to compare variances, and it is calculated 
based on the SSB and the Within-Group Sum of Squares 
(SSW) as shown in Eq. (8). Specifically, the F-value is 
obtained by dividing the mean square between groups 
(MSB) by the mean square within groups (MSW) as 
shown in Eq. (6) and Eq. (7).

MSB SSB
k

=
−1

 (6)

MSW SSW
N k

=
−

 (7)
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F MSB
MSW

=  (8)

3.3. Adaptive Boosting Algorithm
ML methods typically assume that data are well-

distributed, though in practice, this ideal condition 
is rarely met. In real-world classification tasks, class 
imbalance is a common challenge, where certain classes 
have significantly fewer samples than others. This 
imbalance can negatively impact model performance, 
as standard classification methods may be biased toward 
the majority class, leading to poor generalization on 
minority classes. Unlike traditional ML, which builds 
a single model from a dataset that ensembles learning 
methods and combines multiple models to enhance 
predictive performance (Zhou, 2012).

Ensemble methods aim to reduce model errors 
and improve accuracy by leveraging the strengths 
of multiple classifiers. Several techniques are used 
in ensemble learning: Stacking integrates outputs 
from different models, where a meta-model predicts 
the final outcomes based on the outputs of base 
models, while bagging (e.g., random forest) improves 
stability by training models on bootstrapped subsets 
of data. Boosting is a powerful ensemble learning 
technique designed to improve prediction accuracy by 
sequentially combining multiple weak learners into a 
single strong learner (Rincy & Gupta, 2020).

The boosting process works iteratively, where 
each new model is trained to focus on the mistakes 
made by its predecessors. Specifically, misclassified 
instances are assigned to higher weights, making them 
more influential in training subsequent models. This 
iterative process continues, with each new weak learner 
refining the overall prediction by correcting previous 
errors (González et al., 2020). Finally, the predictions 
of all models are aggregated – using weighted voting 
for classification or weighted summation for regression 
– to generate the final output. A workflow diagram of 
the boosting process is shown in Fig. 3, illustrating 
how multiple models contribute to building a more 
robust predictor.

This study leverages the AdaBoost algorithm, 
a robust ensemble method, particularly effective 
in handling class imbalance and enhancing weak 
classifiers. AdaBoost assigns higher weights to 
misclassified instances, ensuring that hard-to-
classify cases receive more focus in subsequent 
iterations. The AdaBoost algorithm follows 
these key steps, and a detailed illustration of the 
AdaBoost process is provided in Fig. 3, depicting 
how misclassified samples influence model training 
at each iteration.
1. Initializing sample weights: Initially, all training 

samples xi are assigned equal weights ωi, ensuring 

a uniform distribution across the dataset. This 
step is mathematically represented in Eq. (9).

ωi N
=

1  (9)

2. Training weak learners: At each boosting 
iteration t, a weak classifier ht(x) is trained using 
the weighted dataset. The classification error ∈t, 
which quantifies the misclassification rate of the 
weak learner, is computed as defined in Eq. (10).

∈ = ( ) ≠( )
=
∑t
i

N

i t i iI h x y
1

ω .  (10)

3. Updating classifier weight: The importance of 
each weak classifier is determined based on its 
classification error. A higher weight is assigned 
to more accurate classifiers, as shown in Eq. (11), 
where αt is calculated as a function of ∈t.

αt
t

t
=

−∈
∈











1

2

1
ln  (11)

2. Updating sample weights: The weights of 
misclassified samples are increased to ensure 
they receive more attention in subsequent 
iterations. The new sample weight distribution is 
determined using Eq. (12), ensuring that harder-
to-classify instances influence future classifiers 
more significantly.

ω ω αi i i i iexp y h x← − ( )( ).� .  (12)

3. Normalization of weights: To maintain a valid 
probability distribution, the sample weights are 
normalized, as represented in Eq. (13).

ω
ω

ω
i

i

j

N
i

←

=∑ 1

 (13)

Fig. 3. The stages of the AdaBoost process
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4. Final model (strong learner): The final strong 
classifier Hx is obtained by combining all 
weak classifiers, weighed according to their 
performance, as stated in Eq. (14).

H sign h xx
t

T

t t=












=
∑
1

α . ( )  (14)

4. Results and Discussion
4.1. Experimental Result

To evaluate model performance, five ML 
models, KNN, Naive Bayes, SVM, decision tree, and 
AdaBoost, were tested under different preprocessing 
scenarios. The dataset was initially split into 80% 
training and 20% testing, ensuring that the models 
were trained on a substantial portion of the data while 
preserving a separate test set for final evaluation.

To optimize hyperparameters and assess 
model generalization, k-fold cross-validation (with 
k = 5 or 10, as specified per experiment) was applied 
exclusively to the training set. This procedure ensured 
that model selection was based on performance across 
multiple validation splits, preventing overfitting 
to a single subset. After cross-validation, the best-
performing hyperparameters were used to train 
the final model, which was then evaluated on the 
unseen test set to provide an independent measure of 
performance. Hyperparameter tuning was conducted 
using a grid search approach, systematically exploring 
multiple parameter values for each model. For KNN, 
the number of neighbors was tested with values (3, 5, 
7, and 9). Naive Bayes was implemented using the 
Gaussian Naive Bayes approach, assuming a normal 
distribution for continuous features. For SVM, the 
radial basis function kernel was applied, with the 
penalty parameter tested over the range (0.1, 1, 10, and 
100). Decision tree models were optimized by varying 

the maximum depth between (5, 10, 15, and 20), and 
the minimum number of samples per leaf was tested at 
(1, 5, and 10). For AdaBoost, the number of estimators 
was set to (50, 100, and 200), whereas the learning rate 
was tuned within the range (0.01, 0.1, and 1).

The final hyperparameter configurations were 
determined based on the highest cross-validation 
accuracy. Once optimized, the models were evaluated on 
the test set, and their performance was measured using 
key classification metrics: accuracy, precision, recall, 
F1 score, and AUC-receiver operating characteristics 
(ROC). The results, presented in Tables 1-3, highlight 
the impact of different preprocessing strategies on 
model performance. These findings demonstrate that 
AdaBoost consistently outperformed other models 
across various preprocessing scenarios, specifically 
after applying ANOVA-based feature selection.

The results in Table 1 highlight the performance 
of various models for lung cancer mutation detection 
without feature selection or outlier removal. KNN 
performs best with an accuracy of 68.8% and a high 
AUC-ROC of 0.746. It shows stable performance even 
without tuning. Naive Bayes improves significantly 
after tuning, matching KNN’s performance and 
achieving high precision (81.8%). SVM and AdaBoost 
initially performed poorly but improved with tuning, 
with SVM reaching 68.8% accuracy and AdaBoost 
improving its F1-score to 0.613. The decision tree 
shows moderate performance with minimal gains from 
tuning. Overall, the results indicate that preprocessing 
steps such as feature selection and outlier removal are 
crucial for improving model performance.

The results in Table 2 demonstrate the significant 
improvement in performance for lung cancer mutation 
detection when outliers are removed, even without 
feature selection. AdaBoost achieves perfect scores 
across all metrics, indicating exceptional model 
performance with complete alignment between 

Table 1. Comparison of performance results (without feature selection and outlier removal)
Model Accuracy F1-score Precision Recall AUC
KNN 0.688 0.689 0.695 0.688 0.746
KNN (tuning) 0.688 0.689 0.695 0.688 0.698
Naive bayes 0.625 0.588 0.798 0.625 0.698
Naive Bayes (Tuning) 0.688 0.689 0.818 0.688 0.695
SVM 0.563 0.405 0.316 0.563 0.240
SVM (tuning) 0.688 0.684 0.731 0.688 0.238
Decision tree 0.563 0.557 0.556 0.563 0.546
Decision tree (tuning) 0.563 0.564 0.570 0.563 0.516
AdaBoost 0.500 0.450 0.577 0.500 0.399
AdaBoost (tuning) 0.625 0.613 0.689 0.625 0.508
Abbreviations: AdaBoost: Adaptive boosting; AUC: Area under the curve; KNN: K-nearest neighbors; SVM: Support vector 
machine.
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precision, recall, and AUC. KNN shows remarkable 
improvement with tuning, reaching 87.5% accuracy 
and strong F1, precision, and recall scores. Naive 
Bayes also performs consistently well, achieving high 
accuracy (87.5%) and an excellent AUC of 0.933, 
both with and without tuning. The decision tree 
delivers strong performance, with tuned and untuned 
versions achieving 87.5% accuracy and a high AUC 
of 0.900. SVM exhibits moderate results, maintaining 
consistent scores before and after tuning. Overall, the 
removal of outliers significantly enhances the models’ 
robustness and effectiveness, particularly boosting 
tuned algorithms such as AdaBoost and KNN.

The results in Table 3 demonstrate the effect 
of combining feature selection and outlier removal 
on lung cancer mutation detection. AdaBoost and 
its tuned version maintain perfect scores across all 
metrics, achieving 100% accuracy, precision, recall, 
F1-score, and AUC, showcasing its effectiveness in 
handling the refined dataset. KNN and Naive Bayes 
perform consistently well, with tuning enhancing their 
performance to 87.5% accuracy and achieving an AUC 

of 0.933. SVM delivers moderate results, maintaining 
a balanced performance with 75% across all metrics, 
showing that feature selection and outlier removal 
have a limited impact on this algorithm. The decision 
tree shows significant improvement with tuning, 
increasing accuracy and recall to 87.5% and achieving 
an AUC of 0.906. Overall, combining feature selection 
with outlier removal enhances model robustness, 
especially for tuned models such as AdaBoost, KNN, 
and decision trees, leading to better classification 
performance and improved detection capability.

4.2. Discussion
The results of this study demonstrate the 

effectiveness of AdaBoost in detecting EGFR 
mutations using clinical and morphological features. 
Compared to other models, AdaBoost consistently 
achieved the highest classification performance across 
different preprocessing scenarios. These findings align 
with previous research by Kwon et al. (2023), who 
reported improved cancer classification by integrating 

Table 2. Comparison of performance results (without feature selection but with outlier removal)
Model Accuracy F1-score Precision Recall AUC
KNN 0.625 0.631 0.656 0.625 0.500
KNN (tuning) 0.875 0.868 0.896 0.875 0.500
Naive Bayes 0.875 0.868 0.896 0.875 0.933
Naive Bayes (tuning) 0.875 0.868 0.896 0.875 0.933
SVM 0.750 0.750 0.750 0.750 0.667
SVM (tuning) 0.750 0.750 0.750 0.750 0.667
Decision tree 0.875 0.877 0.906 0.875 0.900
Decision tree (tuning) 0.875 0.877 0.906 0.875 0.900
AdaBoost 1.000 1.000 1.000 1.000 1.000
AdaBoost (tuning) 1.000 1.000 1.000 1.000 1.000
Abbreviations: AdaBoost: Adaptive boosting; AUC: Area under the curve; KNN: K-nearest neighbors; SVM: Support vector 
machine.

Table 3. Comparison of performance results (with both feature selection and outlier removal)
Model Accuracy F1-score Precision Recall AUC
KNN 0.625 0.631 0.656 0.625 0.667
KNN (tuning) 0.875 0.868 0.896 0.875 0.933
Naive Bayes 0.875 0.868 0.896 0.875 0.933
Naive Bayes (tuning) 0.875 0.868 0.896 0.875 0.933
SVM 0.750 0.750 0.750 0.750 0.750
SVM (tuning) 0.750 0.750 0.750 0.750 0.750
Decision tree 0.750 0.750 0.850 0.750 0.800
Decision tree (tuning) 0.875 0.877 0.906 0.875 0.906
AdaBoost 1.000 1.000 1.000 1.000 1.000
AdaBoost (tuning) 1.000 1.000 1.000 1.000 1.000
Abbreviations: AdaBoost: Adaptive boosting; AUC: Area under the curve; KNN: K-nearest neighbors; SVM: Support vector 
machine.
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multiple clinical biomarkers. Similarly, Wang et al. 
(2019) emphasized the importance of feature selection, 
showing that carefully curated features significantly 
enhance predictive accuracy (Wang et al., 2019).

The role of preprocessing was particularly 
notable in this study. The removal of outliers and 
the application of ANOVA-based feature selection 
resulted in improved model performance, which 
highlighted the impact of feature selection in medical 
ML applications (Jain et al., 2024). Moreover, the 
superiority of ensemble methods in handling complex, 
heterogeneous data has been previously established 
by Gautam et al. (2024), supporting the efficacy of 
AdaBoost in this study (Gautam et al., 2024).

While deep learning approaches such as 
CNNs have been extensively used in lung cancer 
detection. Their application is often constrained by 
high computational demands and the need for large 
datasets (Le et al., 2021). The findings of this study 
further validate the viability of traditional ML models, 
particularly ensemble methods such as AdaBoost, 
as practical alternatives in scenarios where data 
availability and interpretability are crucial factors.

Despite these promising results, certain limitations 
remain. The dataset used in this study was relatively 
small, which may affect the model’s generalizability. 
Future studies should explore external validation on 
larger datasets and incorporate additional features, such as 
genetic and radiomic data, to enhance model robustness. 
In addition, further comparisons with deep learning 
models could provide deeper insights into the trade-offs 
between interpretability and predictive performance.

5. Conclusion
This study demonstrated the effectiveness of the 

AdaBoost algorithm in detecting EGFR mutations in 
lung cancer patients using clinical and morphological 
features. Compared to other ML models such as SVM, 
decision tree, and KNN, AdaBoost achieved superior 
classification performance, emphasizing its potential 
as a non-invasive diagnostic tool. The preprocessing 
steps, including outlier removal, feature encoding, 
and ANOVA-based feature selection, played a crucial 
role in optimizing the dataset and improving model 
accuracy. Furthermore, hyperparameter tuning using 
grid search ensured optimal model performance, 
highlighting the importance of systematic parameter 
selection in ML-based medical applications.

6. Future Work
Despite these promising findings, this study has 

some limitations. The dataset was relatively small, 
consisting of 80 patient records, which may impact the 
generalizability of the results. Therefore, to address 

these limitations and build upon the findings of this 
study, several future research directions are proposed. 
First, the model should be validated on larger and 
more diverse datasets to assess its robustness and 
generalizability. Second, incorporating additional 
features, such as genetic markers and radiomic data, 
may enhance classification performance and provide 
a more comprehensive assessment of mutation status.
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