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Abstract

Convolutional neural networks (CNNs) are widely used in computer vision for tasks like image classification and 
detection. These models work well when the number of image classes is small, but as the number of classes increases, 
accuracy tends to drop due to overfitting. There are several methods to address this issue, such as data augmentation, 
preprocessing, class weighting, transfer learning, and adjusting technical parameters. This study introduces a novel 
approach utilizing the theory of inventive problem-solving (TRIZ) methodology to systematically analyze and 
enhance these existing methods. Using reverse engineering, we deconstructed current solutions and aligned them 
with TRIZ principles to propose more innovative and effective approaches for improving CNN performance. The 
results show that TRIZ provides a structured and creative framework for solving accuracy decline issues in CNN 
models, offering the potential for broader applications in other machine learning architectures.

Keywords: Convolutional Neural Network, Image Classification, Reverse Engineering, Theory of Inventive Problem 
Solving

1. Introduction
Convolutional neural networks (CNNs) are 

widely used in computer vision tasks like image 
classification due to their high performance in learning 
patterns from data (LeCun et al., 2015). However, as 
the number of classes in a dataset increases, model 
accuracy tends to decrease. This drop in accuracy is 
often caused by overfitting, where the model becomes 
too specialized in the training data and struggles to 
generalize to new, unseen data (Krizhevsky et al., 
2017). Solving this problem is critical for applications 
that require accurate classification across many classes, 
such as medical diagnosis, autonomous driving, and 
facial recognition systems (Guo et al., 2019; Litjens 
et al., 2017).

Several approaches have been proposed to 
address this issue, including data augmentation, 
preprocessing techniques, and transfer learning 
(Shorten & Khoshgoftaar, 2019).

“Data augmentation,” for example, increases 
the diversity of the training data by applying 
transformations such as rotation, scaling, and flipping to 

existing images. This approach has proven effective in 
applications such as medical imaging, where obtaining 
large datasets is difficult (Perez & Wang, 2017).

Traditional augmentation techniques, such as 
rotation, flipping, and cropping, have been widely 
used in image classification and segmentation tasks. 
However, more innovative strategies are continuously 
being developed to enhance augmentation effectiveness. 
For instance, Alomar et al. (2023) introduced a new 
“random local rotation” technique, which improves 
data diversity while minimizing the boundary artifacts 
commonly caused by traditional rotation methods. 
These advancements in augmentation help CNNs 
generalize better, especially in tasks with limited data 
availability.

Several approaches have been proposed 
to improve data augmentation, particularly with 
automated techniques. Automated data augmentation 
(AutoDA) methods have been increasingly studied, as 
they can automatically discover optimal augmentation 
strategies tailored to specific datasets. For example, 
a recent comprehensive survey by Yang et al. (2023) 
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categorizes existing AutoDA methods, highlighting 
their efficiency in improving image classification tasks 
by reducing manual intervention and increasing model 
performance through learned augmentation policies. 
These AutoDA methods present a promising direction 
for enhancing data diversity and model generalization 
while reducing human error in the augmentation 
process.

“Preprocessing” techniques, such as 
normalization and cropping, are used to refine input 
data before training, ensuring that the model receives 
consistent and high-quality information (Kamnitsas 
et al., 2017).

Image preprocessing is essential for improving 
CNN performance by reducing noise and enhancing 
data quality. Techniques such as noise reduction, 
histogram equalization, and image hashing have shown 
notable accuracy improvements in facial recognition 
tasks, with gains of over 4% in some cases (Tribuana 
et al., 2024).

“Transfer learning,” on the other hand, leverages 
knowledge from pre-trained models to enhance 
performance in specific tasks, particularly when 
labeled data is limited, allowing models pre-trained 
on large datasets to be fine-tuned for specific tasks 
(Atasever et al., 2023; Pan & Yang, 2010; Tan et al., 
2018).

More innovative approaches are needed to 
tackle the root of the problem in a systematic way. 
This is where the theory of inventive problem-solving 
(TRIZ) methodology comes into play. Developed 
in engineering, TRIZ offers a structured approach 
to identifying contradictions and proposing creative 
solutions based on inventive principles. The method 
has proven effective in solving technical problems 
across various fields, yet its application in machine 
learning, particularly for improving CNN performance, 
remains underexplored.

The aim of this study is to address the issue of 
decreasing accuracy in CNN models as the number of 
classes increases. By applying the TRIZ methodology, 
we aim to develop innovative and systematic solutions 
to improve CNN performance. Through reverse 
engineering, we analyzed current techniques, such as 
data augmentation, preprocessing, class weighting, 
and transfer learning, and aligned these with TRIZ 
principles to propose more effective solutions.

Recent advancements in artificial intelligence 
(AI) have increasingly focused on overcoming the 
challenges posed by small datasets, which are prevalent 
in fields where data collection is restricted. The study 
by Brad and Brad (2023) explores the use of TRIZ 
methodologies to address this issue, offering inventive 
strategies for enhancing AI model performance under 
these constraints. While their research underscores the 
adaptability of TRIZ in optimizing AI with limited 

data, our study extends the application of TRIZ to 
tackle accuracy degradation in CNN models as class 
counts increase. This divergence highlights the broad 
applicability of TRIZ principles across different AI 
challenges.

The contribution of this study lies in the novel 
application of TRIZ methodology to the field of 
machine learning, specifically in solving the overfitting 
problem in CNNs with increasing class counts. TRIZ, 
traditionally applied in engineering, provides a 
structured approach to identifying contradictions and 
generating innovative solutions, which has not been 
widely explored in CNN performance issues.

The remainder of this paper is organized as 
follows: Section 2 details the methodology; Section 
3 presents the implementation; Section 4 provides 
the discussion; and Section 5 concludes the paper, 
summarizing the findings and offering directions for 
future research.

2. Methodology
The TRIZ methodology provides a systematic 

approach to innovation that involves analyzing 
and categorizing thousands of patents to uncover 
universal principles of invention. Central to TRIZ is its 
distinctive method for tackling technical problems by 
converting specific situations into broader, conceptual 
challenges. This process requires breaking down the 
problem into its core elements and then applying 
TRIZ’s set of inventive principles and proven solutions 
to devise a conceptual solution (Gadd, 2011). The 
TRIZ methodology is traditionally outlined as:
(i) Specific problem: The initial stage, is where the 

specific technical problem is identified.
(ii) Conceptual problem (39 parameters): The 

problem is generalized to a conceptual level by 
identifying relevant engineering parameters.

(iii) Conceptual solution (40 principles): Solutions 
are developed based on the 40 inventive 
principles of TRIZ.

(iv) Specific solution: The conceptual solution is then 
translated back into a specific practical solution 
for the initial problem.
The process starts by breaking down a real-world 

problem into a conceptual format. This simplification 
allows for aligning the problem with TRIZ’s effective 
solutions, which rely on structured principles instead 
of random brainstorming ideas. After finding a 
conceptual solution, it is then polished and converted 
into a practical solution that specifically addresses the 
initial problem.

The TRIZ methodology focuses on transforming 
specific, real-world problems into conceptual 
challenges, which can then be matched with 
systematic solutions. Sheu & Lee (2011) proposed 
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a structured process for innovation that incorporates 
TRIZ principles to help break down complex problems 
and develop creative solutions. Their work highlights 
the importance of using TRIZ tools, such as the 
contradiction matrix and inventive principles, to ensure 
that the problem-solving process is both organized and 
comprehensive. By following their systematic process, 
innovators can consistently arrive at effective solutions 
for technical challenges.

In this study, we approach TRIZ from a “reverse 
engineering” perspective, applying its principles not 
just to generate new solutions but also to reinterpret 
and reanalyze existing solutions found in the 
literature. By doing so, we aim to provide a more 
comprehensive framework for problem-solving that 
bridges past solutions with inventive methodologies. 
The methodology proposed in this study is as follows;
(i) Specific solution: Start from an existing solution 

or product.
(ii) Conceptual solution analysis (40 principles): 

Deconstruct the solution to understand how 
TRIZ principles are or can be applied.

(iii) Identification of contradictions (39 parameters): 
Identify any existing or potential contradictions 
that the current solution might be causing or not 
addressing.

(iv) Revised problem statement: Define or redefine 
problems based on insights gained from the 
analysis and contradiction identification.
Reverse engineering within the TRIZ framework 

involves deconstructing existing technical solutions 
to understand their core principles and then matching 
these with TRIZ’s 40 inventive principles and the 
contradiction matrix. This approach allows us to 
assess how well these existing solutions align with 
TRIZ’s systematic process and identify opportunities 
for improvement or further development. For instance, 
a solution that addresses one specific technical 
contradiction may have untapped potential for solving 
additional contradictions when viewed through the 
lens of TRIZ.

Fig. 1 demonstrates how the traditional TRIZ 
process is a forward-thinking approach, starting from 
problem identification and moving toward a solution. 
In contrast, the reverse engineering process begins 
with an existing solution, analyzing it through the 
TRIZ lens to uncover deeper insights and potentially 
redefine the problem or improve the solution.

3. Implementation
In this section, we take a different path from the 

usual forward-thinking problem-solving approaches. 
This is where reverse engineering comes into play. 
Reverse engineering, in essence, involves working 
backward to deconstruct an existing solution to 

understand its foundational principles. In doing so, we 
can uncover hidden opportunities for improvement or 
discover alternative solutions that may not have been 
obvious initially. Instead of building a solution from 
scratch, we analyze what already exists, break it down, 
and explore how it aligns with TRIZ’s 40 inventive 
principles and contradiction matrix.

By reversing the usual flow of thought, we 
can gain deeper insights into how existing solutions 
operate and how they can be enhanced or adapted 
for broader applications. This method is particularly 
useful in complex problems, such as improving the 
accuracy of CNN models, where conventional methods 
may overlook indirect contradictions or potential 
improvements that TRIZ can highlight.

3.1. TRIZ Step 4: Identifying Specific Solutions
In TRIZ step 4, we focus on identifying concrete, 

practical solutions to address the issue of decreasing 
accuracy in CNN models as the number of image classes 
increases. From a reverse engineering perspective, we 
analyze how existing methods have been applied to 
similar problems and how TRIZ principles can guide 
the improvement of these methods.

One effective solution is “data augmentation,” 
which involves expanding the dataset by generating 
new training examples through techniques such as 
rotating, flipping, scaling, cropping, and adding noise. 
We can see that “Principle 20: Continuity of Useful 
Action” fits well here, as the method continuously 
provides useful variations of the data that help the 

Fig. 1. A comparison of the flows of a (A) TRIZ 
process and a (B) TRIZ-based reverse engineering 

process
Abbreviation: TRIZ: Theory of inventive problem 

solving.

B

A
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model learn better. “Principle 15: Dynamics” also 
applies because the transformations increase the 
adaptability of the model to diverse input scenarios.

Similarly, “dimensional adjustment” is another 
common preprocessing technique that improves 
consistency across classes by resizing or normalizing 
images. This approach aligns with “Principle 17: 
Another Dimension,” which suggests modifying or 
using different dimensions to solve a problem. By 
ensuring that images are of uniform size, we reduce 
the variability in the input data, which enhances the 
model’s ability to make accurate predictions.

In cases where there is a class imbalance, “class 
weighting” can improve accuracy by giving more 
importance to underrepresented classes. This method 
reflects “Principle 35: Parameter Changes,” which 
involves adjusting key parameters to achieve the 
desired result. Assigning weights to classes based on 
their representation helps the model treat all classes 
fairly, reducing bias and improving performance.

Finally, “transfer learning” offers a powerful way 
to reuse pre-trained models on new tasks, particularly 
when data is scarce. This approach aligns with 
“Principle 24: Intermediary,” which suggests using 
an intermediary to assist with problem-solving. The 
intermediary model speeds up learning and improves 
performance, especially when the new task shares 
similarities with the original one.

3.2. TRIZ Step 3: Identifying Conceptual Solutions
In TRIZ step 3, the goal is to select a conceptual 

solution based on TRIZ principles that fits the problem. 
Using a reverse engineering approach, we look back 
at how similar problems have been solved in the past 
and apply those insights to find conceptual solutions 
for the current issue of CNN accuracy decline. Table 1 
lists all the candidate principles. Table 2 shows the 
candidate principles that match the specific solutions 
presented in step 4.

The candidate principles listed in Table 1 were 
selected through a structured TRIZ-based process. 
Initially, principles annotated with the letter “a” (i.e., 15, 
17, 20, 24, and 35) were identified based on their 
relevance to the solution alternatives in Table 2. These 
principles were mapped to engineering characteristics 
using a contradiction matrix, highlighting key pairs 
(Table 3).

For “data augmentation,” we selected Principles 
15 and 20 because these principles describe how 
system flexibility and continuous beneficial actions 
can enhance performance.

When considering “dimensional adjustment,” 
Principle 17 stood out as the most appropriate. 
Adjusting the dimensions of input data can help reduce 
the computational complexity and make the data more 

uniform, thereby improving the model’s ability to 
classify images.

In the case of “class weighting,” Principle 
35 was chosen because it directly addresses the 
problem of imbalanced datasets. Modifying the class 
weights allows the model to handle rare classes more 
effectively, which is essential for improving overall 
accuracy.

Lastly, for “transfer learning,” Principle 24 is 
highly relevant. Transfer learning enables models to 
leverage previously learned knowledge, significantly 
reducing training time and improving accuracy.

3.3. TRIZ Step 2: Defining the Conceptual 
Problem

In TRIZ, step 2 involves identifying the 
engineering characteristics that are in conflict, 
resulting in a technical contradiction. Engineering 

Table 2. Candidate principles and solution 
matching

No. Solution alternatives TRIZ candidate 
principle

1 Data augmentation 15, 20
2 Preprocessing 17
3 Assigning class weights 35
4 Transfer learning 24
Abbreviation: TRIZ: Theory of inventive problem-solving.

Table 1. Candidate principles
No. Principle Definition
1 2 Taking out
2 3 Local quality
3 13 The other way round
4 15a Dynamics
5 17a Another dimension
6 18 Mechanical vibration
7 20a Continuity of useful action
8 23 Feedback
9 24a Intermediary
10 27 Cheap short-living objects
11 28 Mechanic substitution
12 29 Pneumatics and hydraulics
13 30 Flexible shells and thin films
14 33 Homogeneity
15 35a Parameter changes
16 36 Phase transitions
17 37 Thermal expansion
Note: aCandidate principles.
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characteristics refer to specific technical parameters 
or features of a system. A contradiction occurs when 
improving one characteristic negatively impacts 
another. In our case, increasing the number of image 
classes in a CNN model may lead to a decrease in 
accuracy—these are two conflicting engineering 
characteristics.

Based on the guidance from the candidate 
principles identified in TRIZ step 3, we selected a pair 
of engineering characteristics. Table 4 outlines the 
engineering characteristics obtained from the normal 
analysis of the problem. Two major contradictions 
were identified: one representing the increase in the 
number of classes (related to engineering characteristic 
26, “quantity of substance”) and another representing 
the decrease in model accuracy (related to engineering 
characteristic 35, “adaptability or versatility”). These 
contradictions must be addressed to improve the 
model’s performance.

Table 3 shows the conceptual solution 
combinations derived from these contradictions. The 
contradiction pair 26 and 35, guided by Principles 15, 
17, and 20, was determined to be the most relevant for 
this study. Engineering characteristic 26 corresponds 
to the challenge of managing an increasing number of 
classes while engineering characteristic 35 relates to 
the issue of decreasing accuracy. These contradiction 
reflects the balance we seek between increasing model 
capacity and maintaining high accuracy.

It should be highlighted here that, unlike 
the traditional TRIZ methodology that starts with 
engineering contradictions, our approach began 
with identifying the inventive principles, as shown 
in Table 3. For instance, the contradiction pair (10, 
35) was highlighted due to its strong alignment with 
Principles 15, 17, and 20.

The inclusion of “Force” was guided by its 
connection to critical principles such as 15 (Dynamics). 
While characteristics like “Strength” were considered, 
no directly related principles were identified, which 
justified its exclusion.

By identifying the engineering characteristics 
and their associated contradictions, we can apply TRIZ 
principles to systematically resolve these conflicts. 
For example, “Principle 15: Dynamics” helps 
address flexibility in handling different classes, while 
“Principle 17: Another Dimension” suggests altering 
how data are processed to maintain accuracy despite 
increased complexity.

In comparison, Brad and Brad (2023) explored 
contradictions between data quantity and system 
performance (contradiction pairs 26 & 28) in their 
study. Their analysis of contradictions between system 
complexity and performance (contradiction pair 36 
& 28) further illustrates how TRIZ can be used to 
systematically resolve technical challenges by focusing 
on the core engineering characteristics at play.

4. Discussion
In this study, we applied a TRIZ-based reverse 

engineering approach to address the problem of 
decreasing accuracy in CNN models as the number of 
image classes increases. This methodology enabled a 
systematic examination of existing solutions, revealing 
opportunities for innovation by aligning these solutions 
with TRIZ principles.

We further discuss the insights gained through 
this approach, with a particular focus on the application 
of transfer learning and its reinterpretation within the 
TRIZ framework.

4.1. General Insights
The TRIZ-based reverse engineering shifts the 

focus from conventional problem-solving to a structured 
analysis of existing solutions. This approach provides a 
systematic way to identify and resolve contradictions 
inherent in CNN models, such as the trade-off between 
model complexity and accuracy. By deconstructing 
existing methods, such as data augmentation, 
preprocessing, and class weighting, we identified their 
alignment with specific TRIZ principles and proposed 
refinements that address overlooked challenges.

For instance, data augmentation aligns with 
“Principle 20: Continuity of Useful Action,” as it 

Table 4. Candidate contradictions
No. Eng. char. Definition
1 10 Force (intensity)
2 26 Quantity of substance
3 28 Measurement accuracy
4 29 Manufacturing precision
5 35 Adaptability or versatility
6 39 Productivity
Abbreviation: Eng. Char.: Engineering characteristic.

Table 3. Candidate pairs
Candidates 28 29 35 39
10 10, 23, 24a, 35a 28, 29, 36, 37 15a, 17a, 18, 20a 3, 28, 35a, 37
26 2, 13, 28 30, 33 3, 15a, 29 3, 13, 27, 29
Note: aCandidate principles.
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generates continuous variations in the training data, 
enabling better model generalization. Similarly, 
preprocessing techniques, such as dimensional 
adjustments, align with “Principle 17: Another 
Dimension,” addressing variability in input data to 
improve consistency and prediction accuracy. These 
connections demonstrate how TRIZ principles provide 
a creative and structured framework to optimize 
existing solutions.

4.2. Transfer Learning and Intermediary Principle
We acknowledge that transfer learning is a 

widely recognized method for improving CNN 
performance, particularly in cases with limited labeled 
data. However, its reinterpretation through TRIZ’s 
“Principle 24: Intermediary” offers new perspectives 
and applications.

Transfer learning is typically seen as a way to 
reuse pre-trained models for specific tasks. Within the 
TRIZ framework, we redefine it as an intermediary 
that bridges two conflicting needs: (i) the scarcity of 
labeled data in new tasks, and (ii) the requirement for 
high accuracy in performance. This reinterpretation 
positions transfer learning not just as a static tool 
but also as a dynamic mediator that facilitates the 
resolution of these contradictions. By emphasizing its 
role as an intermediary, TRIZ provides a structured 
perspective for enhancing the applicability of transfer 
learning.

Viewing transfer learning through the lens of 
TRIZ enables a broader application of this technique. 
For example, TRIZ principles encourage creative 
extensions of pre-trained models to address additional 
challenges, such as:
(i) Reducing bias in class imbalance: By 

systematically reweighting features learned by 
the intermediary model, we can mitigate biases 
present in underrepresented classes.

(ii) Overcoming noise in preprocessing: Transfer 
learning can serve as a filter to preprocess noisy 
data more effectively, guided by TRIZ principles, 
such as “Principle 35: Parameter Changes.”
These reinterpretations highlight how TRIZ 

inspires creative problem-solving by encouraging 
researchers to think beyond the conventional uses of 
established techniques.

5. Concluding Remarks
The TRIZ-based reverse engineering approach, 

proposed in this study, offers a structured framework 
for analyzing existing solutions, uncovering 
contradictions, and proposing innovative refinements. 
Unlike traditional forward-thinking methods, 
reverse engineering starts with what already exists, 

systematically deconstructs these solutions, and applies 
TRIZ principles to identify untapped opportunities. 
This methodology provides two major advantages:
(i) Systematic problem analysis: Traditional 

problem-solving approaches often focus on 
developing new solutions from scratch. In 
contrast, reverse engineering allows us to 
examine existing solutions critically, revealing 
their underlying contradictions or limitations. 
By aligning these with TRIZ’s 40 inventive 
principles and contradiction matrix, we can 
systematically identify areas for improvement or 
innovation.

(ii) Maximizing existing knowledge: This approach 
avoids reinventing the wheel by leveraging what 
is already available. It enables researchers to 
reinterpret existing solutions through the lens of 
TRIZ principles, uncovering new opportunities 
for optimization or broader application.
This study implemented the TRIZ-based reverse 

engineering approach to address the problem of accuracy 
decline in CNN models as the number of image classes 
increases. By systematically deconstructing existing 
solutions and analyzing contradictions between key 
engineering characteristics, we were able to define 
specific TRIZ principles to propose practical solutions.

The use of data augmentation, dimensional 
adjustment, class weighting, and transfer learning 
proved to be effective strategies for improving model 
accuracy. These methods, when viewed through the 
TRIZ framework, provided a structured approach to 
solving the technical contradictions between class 
quantity and accuracy. The reverse engineering 
perspective further enhanced this process by allowing 
us to identify hidden opportunities for improvement 
within the existing solutions.

While this study focused on CNN models, the 
principles of TRIZ could be applied to other machine 
learning architectures, such as recurrent neural 
networks, transformers, or generative adversarial 
networks. Future research could investigate how TRIZ 
can be adapted to solve contradictions in these more 
advanced architectures.
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