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Abstract

The massive growth of electronic data has created a demand for efficient tools to manage information and support 
fast decision-making. Automatic text summarization (ATS) addresses this by condensing large texts into concise, 
relevant summaries rapidly. ATS methods are categorized as extractive, abstractive, or hybrid. Extractive techniques 
select key sentences from input documents, whereas abstractive techniques generate new sentences to capture 
meaning. Hybrid methods combine both strategies. However, despite numerous suggested techniques, machine-
generated summaries often fail to match the accuracy and coherence of human-written summaries. This study 
reviewed existing ATS techniques and highlighted their limitations, particularly high computational costs and 
low training efficiency. To address these problems, this study proposed an improved multilayer extreme learning 
machine autoencoder (MLELM–AE) and an ensemble learning framework that integrates four machine learning 
models: Sentence-bidirectional encoder representations from transformers, autoencoder, variational autoencoder, and 
the improved MLELM–AE. The proposed framework generates summaries through cosine similarity evaluation, 
followed by voting-based fusion, re-ranking, and optimal sentence selection. Experimental results showed that the 
proposed improved MLELM–AE model achieved strong performance, with an execution time of 50,015 ms and a 
recall-oriented understudy for gisting evaluation 1 score of 0.865145. These findings demonstrate that the proposed 
ensemble framework delivers more accurate and efficient summaries, offering a promising advancement in ATS.

Keywords: Automatic Text Summarization, Bidirectional Encoder Representations from Transformers, Deep Neural 
Networks, Multilayer Extreme Learning Machine Autoencoder, Word Embedding, Word2vec

1. Introduction

In today’s era, the Internet has huge amounts of 
data due to the rapid expansion of web-based electronic 
documents. The proliferation of this vast volume 
of data makes it complicated to collect pertinent 
information efficiently. In view of the huge amount of 
text documents, gathering and processing primary data 
from various resources is a complex and exhaustive 
task, often exceeding human capacity. This challenge 
has motivated researchers to develop techniques for 
automatic text summarization (ATS), which aim to 
condense large volumes of text into concise summaries 
while preserving meaning and context. Over the 
past several decades, several information retrieval 
techniques have been explored to address this problem.

Text summarization is a rapidly growing and 
challenging task in natural language processing 
(NLP). It aims to produce a condensed version of a 
document that retains the key ideas of the original 
text, facilitating the comprehension of these ideas 
(Mitra et al., 2000). ATS is particularly valuable 
because manual text summarization is tedious and 
time-consuming. In the NLP domain, summarization 
also serves as an intermediary step to reduce text 
size and complexity. Key application areas of text 
summarization include text classification, question and 
answer, legal document summarization, social media 
text summarization, and headline/title creation.

Text summarization can be categorized by output 
type into two main approaches (Gambhir & Gupta, 
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2017): Extractive text summarization and abstractive 
text summarization. Extractive text summarization is 
the most widespread approach to text summarization. 
It extracts important textual units, such as phrases, 
words, and sentences, based on linguistic and 
mathematical features to form a summary. On the 
other hand, abstractive text summarization generates 
summaries closer to human-written summaries by 
creating semantic representations and producing new 
sentences, rather than merely reordering existing ones. 
Summaries generated by these methods are generally 
grammatically correct. Therefore, these techniques are 
not limited to simply picking and reordering sentences 
from the original text.

Summarization can also be classified by input 
type (single vs. multi-document) or purpose (generic, 
domain-specific, or query-based) (Zajic et al., 2008). 
Generic summarization captures broad themes and 
addresses a wide community of users; domain-specific 
summarization incorporates knowledge of specialized 
fields, such as law or biomedicine, while query-based 
summarization tailors the output to user needs.

Despite progress, ATS still faces significant 
challenges. Key issues include encoding high-
level semantic structures, handling large input 
dimensionality, managing out-of-vocabulary words, 
and ensuring accurate part-of-speech tagging. 
Conventional machine learning approaches often 
struggle with these challenges due to their shallow 
architecture and restricted capability for hierarchical 
feature learning. Neural network-based methods 
have improved semantic modeling, but they still face 
limitations, including computational inefficiency, 
noisy training data, and the omission of important 
sentences due to score-based selection.

To overcome these limitations, this study 
proposed an improved novel ensemble learning-
based ATS, called improved multilayer extreme 
learning machine–autoencoder (MLELM–AE). 
The multilayer architecture enhances the ability 
to learn deep and abstract features, improving the 
identification of salient information. In addition, the 
proposed algorithm incorporates end-to-end training 
using backpropagation, allowing iterative refinement 
of hidden layers and better generalization compared 
to conventional extreme learning machine (ELM)-
based approaches. The AE framework ensures efficient 
reconstruction, enabling efficient dimensionality 
reduction while retaining important information for 
producing high-quality summaries.

The proposed ensemble framework integrates 
multiple models, including the improved MLELM–AE, 
AE, variational AE (VAE), and sentence-bidirectional 
encoder representations from transformers (SBERT). It 
employs data transformation steps, such as clustering, 
topic modeling, term frequency–inverse document 

frequency (TF–IDF) analysis, and frequent term 
selection to enhance text representation. Entity-focused 
sentences are captured through topic modeling, while 
a re-ranking mechanism ensures optimal sentence 
selection for the final summary. Overall, the proposed 
ensemble approach significantly advances ATS by 
combining semantic entity extraction, robust feature 
learning, and effective sentence re-evaluation.

The remainder of this paper is structured as 
follows: Section 2 reviews existing works, Section 3 
details the proposed methodology, Section 4 presents 
results and discussion, and Section 5 concludes with 
future scopes.

2. Related Works
The work by Toprak & Turan (2025) demonstrated 

an automatic abstractive document summarization 
framework based on transformers and sentence 
grouping. The collected dataset was pre-processed and 
then utilized to train the transformer model. Then, the 
transformer model proficiently summarized the text. 
This approach obtained a SimHash text similarity 
of 93.2%, indicating a high effectiveness and low 
complexity. However, this model suffered from 
considerable information loss.

Khan et al. (2025) implemented a hybrid deep 
learning-based next-generation text summarization for 
psychological data. Text-to-text transfer transformer 
(T5) and long short-term memory (LSTM) were 
employed to perform advanced text summarization. 
This approach achieved an accuracy, precision, and 
recall of 74%, 72%, and 72%, respectively, indicating 
its supremacy. However, the framework had high 
computational complexity owing to the hybrid scheme.

Alotaibi & Nadeem (2025) introduced an Arabic 
aspect-based sentiment analysis and abstractive 
text summarization of traffic services using an 
unsupervised-centric approach. A fine-tuned AraBART 
algorithm was employed to perform abstractive text 
summarization. This algorithm achieved 92.13% 
precision and 92.07% recall, indicating its high 
efficacy. However, the model struggled to handle the 
text from various domains.

Onan & Alhumyani (2024a) propounded an 
extractive text summarization framework using 
fuzzy topic modeling and bidirectional encoder 
representations from transformers (BERT). Here, 
fuzzy logic was used to improve topic modeling, 
thereby capturing a nuanced representation of 
word-topic relationships. This algorithm obtained 
recall-oriented understudy for gisting evaluation 1 
(ROUGE-1) and ROUGE-2 scores of 45.3774 and 
24.1808, respectively. It significantly provided high-
quality text summaries. However, the framework was 
ineffective due to the lack of interpretability.
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In the work by Onan & Alhumyani (2024b), they 
implemented a multi-element contextual hypergraph 
extractive summarizer (MCHES) to perform extractive 
text summarization. MCHES effectively constructed 
a contextual hypergraph, showing semantic and 
discourse hyperedges. The approach achieved an 
ROUGE-1 score of 44.321 and an ROUGE-2 score 
of 19.129, indicating its impressive performance in 
extractive summarization. However, the framework 
had a maximum risk of bias amplification.

Hassan et al. (2024) demonstrated an approach 
of extractive text summarization using NLP with an 
optimal deep learning (ETS-NLPODL) model. The 
research analysis of various parameters indicated 
that the ETS-NLPODL approach achieved excellent 
performance compared to other models regarding 
diverse performance measures.

Hernández-Castañeda et al. (2023) designed 
a fitness function based on genetic programming to 
generate ATS. The experimental outcomes clearly 
showed that the grouping of lexical and semantic 
information (LDA+Doc2Vec+TF–IDF) achieved 
exceptional outcomes in identifying key ideas to form 
a summary.

Dilawari et al. (2023) proposed a model for both 
extractive and abstractive summarizations, named as 
automatic feature-rich model architecture comprises 
a hierarchical bidirectional LSTM. The results 
demonstrated that the model outperformed existing 
techniques, with a ROUGE score of 37.76%, high 
generality, and high sapiential.

An improved English text summary algorithm 
based on association semantic rules was proposed 
in a previous study (Wan, 2018). The method mined 
relative features among English sentences and phrases, 
implemented keyword extraction in English abstracts, 
and applied semantic relevance analysis with 
association rules distinction, grounded in knowledge 
theory. Semantic rules were further mined from 
English teaching texts. The outcome of the replication 
showed that the technique could accurately extract 
summaries with improved convergence and output 
accuracy. This demonstrates strong application value 
for efficiently reading English texts and gathering 
important information.

Zenkert et al. (2018) proposed the 
multidimensional knowledge representation structure. 
The fallouts of analytics using individual methods 
for text mining, such as named person recognition, 
sentiment analysis, and topic detection, were 
integrated into a knowledge base as dimensions to 
support knowledge exploration, vision, and computer-
aided written tasks. This framework supports cross-
dimensional exploration and provides a novel approach 
for summarization and knowledge discovery.

Similarly, Prameswari et al. (2018) combined 
sentiment analysis and summary generation, applying 
their method to hotel reviews in Bali and Labuan 
Bajo. Their model achieved a rating accuracy of 78% 
with a Davies–Bouldin index of 0.071, demonstrating 
potential benefits for the Indonesian tourism industry.

Jain et al. (2017) proposed a neural network-
based extractive summarization function, testing on 
the Document Understanding Conferences (DUC) 
2002 dataset. Their approach outperformed four online 
summarizers in ROUGE evaluations, indicating the 
importance of robust feature extraction for summary 
generation. The scale and complexity of training 
datasets and additional exact methods to convert 
abstract summaries into extractive summaries will 
further improve the model.

In clustering-based approaches, Pradip & Patil 
(2016) developed a hierarchical sentence clustering 
algorithm to address instability, complexity, and 
sensitivity issues in traditional methods. Any type 
of relational clustering algorithm may work with 
an implemented hierarchical clustering algorithm. 
The general text mining algorithm can also be used. 
Experimental results demonstrate that hierarchical 
clustering was useful and yielded improved results for 
text documents.

Akter et al. (2017) presented a text summarization 
method that extracts significant phrases from single or 
multiple Bengali documents, which were prepared by 
processes, such as tokenization or interrupt operations. 
The word score was then determined using the TF–IDF 
weighting, and the sentence value was calculated with 
location. For sentence score calculation, the term 
skeleton and cue were also considered. K-means 
clustering was used to summarize many or a single 
document in a final form. Their method reduced 
redundancy and improved run-time complexity 
compared to existing extractive approaches.

Jadhav et al. (2019) designed a bidirectional 
recurrent neural network (RNN)-based encoder-
decoder model that identifies key phrases and generates 
coherent summaries. Initially, key phrases were listed 
and arranged in a consolidated report. Given the 
measurable and semantic highlights of sentences, 
the sense of the sentence was chosen. This shorter 
representation was then passed through an encoder-
decoder template to produce a description of the entire 
document. The projected model efficiently created 
a concise and linguistically accurate synthesis by 
recognizing the content and disclosing it in its terms. 
The proposed methodology only selected related terms 
and passed them to a bidirectional RNN to define the 
central ideas of the article and to represent them.

The ATS problem consists of two main tasks: 
Single-document and multi-document summarization. 
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In the case of a single document, input and summarized 
details are extracted from a specific document, 
whereas for multiple documents, summaries are 
generated based on a shared theme. A recent statistical 
approach was proposed by Madhuri and Kumar (2019) 
to perform extractive text summarization on single 
documents. The method of extracting sentences was 
presented, providing a brief overview of the input 
text. Phrases were categorized by weight assignment. 
Highly ranked phrases were then selected to form the 
final summary, which can also be converted into audio 
output.

Document review aims to condense the source 
text into a short and succinct form while preserving 
accuracy and general significance. Dave & Jaswal 
(2015) proposed an abstractive summary approach 
that generates compact and human-readable 
summaries using WordNet ontology derived from 
extractive summaries. The generated summaries were 
grammatically correct and more coherent for human 
readers.

Elbarougy et al. (2020) introduced an Arabic 
text summarization method, a graphical system with 
text expressed on its vertices. An improved PageRank 
algorithm was applied with initial node scores and 
multiple iterations to generate optimal summaries 
while eliminating redundancies. Using the Essex 
Arabic Summaries Corpus for evaluation, this method 
outperformed TextRank and LexRank, achieving a 
final F-measure of 67.98, which surpassed earlier 
approaches.

Collecting textual information is a challenging 
activity in biomedical text synthesis. Moradi et al. 
(2020) proposed a method leveraging BERT-based 
contextual embeddings to capture the semantic 
information of biomedical texts. Their deep learning 
model clustered sentences using BERT and selected 
the most relevant ones for summary generation. 
Evaluation with the ROUGE toolkit demonstrated 
significant improvements in biomedical text synthesis, 
outperforming other domain-independent approaches.

A multi-target optimization method has 
contributed to ATS over the years. Sanchez-Gomez et al. 
(2019) applied a multi-objective artificial bee colony 
(MOABC) algorithm, incorporating parallelization 
strategies. Comparative experiments on DUC datasets 
showed that their asynchronous structure significantly 
enhanced performance, achieving over 55  times 
quicker with 64 threads and an efficiency of 86.72%, 
outperforming traditional synchronous methods.

Qaroush et al. (2021) proposed automated 
and extractive general Arabic single-document 
summarizing techniques to construct comprehensive 
summary details. The proposed extractive methods 
used statistical and semantic features to evaluate 
sentence value, diversity, and exposure. Two 

summarizing techniques were also used to construct 
a description and then exploited built characteristics, 
such as score and machine learning supervision. 
Performance of the proposed technique was tested 
using the ROUGE metrics, yielding superior 
results in terms of accuracy, retrieval, and F-score 
compared to related works.Present graph-based 
extractive summarization methods represent corpus 
sentences as nodes, with edges depicting lexical 
similarity between sentences (Van Lierde & Chow, 
2019). However, such approaches cannot adequately 
capture semantic similarities, since sentences may 
convey related information using different words. To 
address this, Van Lierde & Chow (2019) proposed 
extracting semantical similarities based on topical 
representations. They introduced a topic model to infer 
the distribution of hierarchical, context-influenced 
sentences. Since each concept establishes semantic 
relationships across sentences by assigning degrees 
of membership, the authors further proposed a fluid 
hypergraph model, where nodes represent sentences 
and fuzzy hyperedges. Sentence collections were 
then extracted to produce comprehensive summaries 
while simultaneously optimizing user-defined query 
relevance, centrality within the hypergraph, and topic 
coverage. To solve this optimization problem, they 
developed an algorithm based on submodular function 
theory. A  thorough comparison with other graphic 
summarizers demonstrated the superiority of their 
strategy in the coverage of summaries.

Extractive multifocal approaches aim to 
synthesize key material while reducing redundancy. 
One promising avenue is multi-objective optimization, 
which naturally fits the summarization problem 
(Sanchez-Gomez et al., 2019). This method produces 
a set of non-dominated solutions or Pareto sequences, 
though ultimately only one summary is selected. To 
address this, post-Pareto analyses were performed 
using various methods, including hypervolume 
maximization, minimum distance from all points, 
minimum distance from an ideal point, and a consensus 
solution. Experiments conducted on DUC datasets and 
evaluated using ROUGE metrics revealed that the 
consensus approach outperformed others, improving 
ROUGE scores by 10.68–27.32%.

In another study, Alami et al. (2019) enhanced 
ATS efficiency using unregulated deep neural networks 
combined with a word embedding approach. First, 
they built a word definition on word integration and 
demonstrated that the representation of Word2Vec was 
better than that of traditional bag-of-words (BOW). 
Second, by combining Word2Vec and unmonitored 
functional learning approaches, they offered 
alternative models for incorporating information 
from various sources. They revealed that uncontrolled 
neural network models trained on the representation 
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of Word2Vec were enhanced compared to those 
trained on BOW models. Third, they described three 
ensembles: (i) Majority voting between Word2Vec 
and BOW, (ii) aggregation of BOW with unsupervised 
neural network outputs, and (iii) a combined 
ensemble of Word2Vec and unattended neural 
networks. Results showed that ensemble techniques 
enhanced ATS performance, with Word2Vec-based 
ensembles consistently outperforming BOW-based 
models. Comparative evaluations across two publicly 
accessible datasets confirmed that Word2Vec ensemble 
methods yielded the best results, surpassing all studied 
models in effectiveness.

Abstractive text summarization is a more 
challenging task than extractive summarization, as it 
requires generating paraphrased text that conveys the 
entire meaning of the source. Nonetheless, it typically 
yields more natural summaries with improved cohesion 
between sentences. Adelia et al. (2019) demonstrated 
that RNNs can effectively produce abstractive 
summaries in both English and Chinese. In their study, 
a bidirectional gated recurrent unit RNN architecture 
was used to capture the effect of surrounding words 
on generated summaries. Applying a similar method to 
Bahasa Indonesia, they showed that the model could 
generate summaries closely resembling human-written 
abstracts, outperforming purely extractive approaches. 
Their findings suggest that RNN-based abstractive 
models can achieve strong comprehension of source 
texts to support high-quality summary generation.

Building on this line of work, Yao et al. (2018) 
proposed a dual-encoder sequence-to-sequence 
attentional model for abstractive summarization. 
Unlike previous research that relied on a single 
encoder, their model incorporated both a primary 
encoder, which performed coarse-grained encoding, 
and a secondary encoder, which provided fine-grained 
encoding based on raw input and previously generated 
outputs. By combining both levels, the model reduced 
redundancy and improved handling of long sequences. 
The test outcomes of two complicated datasets (DUC 
2004 and CNN Daily Mail) revealed that their hybrid 
model of encoding outperformed existing methods.

Du & Huo (2020) focused on fuzzy logic rules, 
multi-feature analysis, and genetic algorithms to 
develop a new automated synthesis paradigm for news 
texts. Since news articles often contain distinctive 
elements, such as time, place, and characters, word 
features were first extracted, and those surpassing a 
threshold score were identified as keywords. A linear 
combination of these characteristics revealed the 
meaning of each sentence, and each feature evaluated 
the genetic algorithms. Using fuzzy logic, the system 
generated automated summaries. The simulation 
results on the DUC 2002 dataset, evaluated with the 
ROUGE tool, demonstrated that the proposed method 

outperformed several baseline approaches, including 
Microsoft Word, System19, System2, System30, 
single-document summarization–neural network with 
a genetic algorithm, general context decoder, self-
organizing map, and support vector machine ranking.

Alzuhair & Al-Dhelaan (2019) proposed 
combining multiple graph-based methods to enhance 
the quality of extractive summary outcomes. Given the 
widespread use of graph-based techniques in NLP, they 
developed a hybrid approach that integrates two graph-
based techniques (four different weighting methods 
and two graph methods). To merge the results, both 
the arithmetic mean and harmonic mean were tested. 
Experiments conducted on the DUC 2003 and DUC 
2004 datasets, evaluated using the ROUGE toolkit, 
and revealed that the harmonic mean outperformed 
the arithmetic mean. Furthermore, the hybrid method 
demonstrated significant improvements over baseline 
models and several state-of-the-art approaches when 
combined with weighting schemes.

Building on sequence-to-sequence frameworks, 
Ding et al. (2020) sought to optimize traditional 
sequence mapping and semantic representation for 
abstractive summarization. Their proposed method 
enhanced the model’s semantic comprehension 
of source texts and improved the coherence of 
generated summaries. The method was validated on 
two benchmark datasets, large-scale Chinese short 
text summarization (LCSTS) and SOGOU datasets, 
where experimental results showed ROUGE score 
improvements of 10–13% compared to existing 
algorithms. These findings demonstrate that optimizing 
semantic representation can substantially enhance both 
the accuracy and readability of generated summaries.

Similarly, Liang et al. (2020) introduced 
an abstractive summarization model tailored for 
social media texts using a selective sequence-to-
sequence (i.e., Seq2Seq) framework. To improve 
content filtering, a discerning gate was added after 
the encoder to eliminate irrelevant or redundant 
information. In addition, they combined inter-entropy 
with enhancement learning to directly optimize 
ROUGE scores. Evaluations on the LCSTS dataset 
demonstrated that their model achieved F1-score gains 
of 2.6% for ROUGE-1, 2.1% for ROUGE-2, and 2.0% 
for ROUGE-L compared with the baseline Seq2seq 
model.

El-Kassas et al. (2020) introduced EdgeSumm, 
a novel extractive graph-based architecture designed 
to optimize ATS for single documents. The framework 
relies on four proposed algorithms, with the first 
constructing a novel text graph model (NTGM) from 
the input document. The second and third algorithms 
identify candidate sentences from the constructed 
text graph, while the fourth finalizes the summary 
selection. Unlike many existing methods, EdgeSumm 
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is domain-independent and unsupervised, requiring no 
training data. The model was evaluated on the standard 
DUC 2001 and DUC 2002 datasets using the ROUGE 
evaluation toolkit. Results showed that EdgeSumm 
achieved the highest ROUGE scores on DUC 2001, 
and on DUC 2002, it outperformed several state-of-
the-art ATS frameworks by margins of 1.2–4.7% in 
ROUGE-1 and ROUGE-L. The proposed framework 
also delivered highly competitive performance 
on ROUGE-2 and ROUGE-SU4, confirming its 
robustness and efficiency.

Automatic review summarization has emerged 
as an effective approach to improving information 
processing for travelers. However, many review texts 
contain vague or non-sentimental content, limiting 
the effectiveness of sentiment-based methods. To 
address this, Tsai et al. (2020) proposed a systematic 
framework that first identifies useful reviews through 
a classifier and then categorizes sentences into six 
hotel-related features. Subsequently, the polarity of 
each sentence is evaluated for analytical summaries. 
Experimental results demonstrated that the proposed 
method outperformed other methods, producing more 
accurate and informative summaries of hotel reviews.

Joshi et al. (2019) proposed SummCoder, 
a novel extractive method for single-document 
summarization. This framework is based on three 
sentence-level analysis techniques: Sentence position, 
content relevance, and sentence novelty. Content 
relevance is computed using a deep AE network, 
while novelty is measured through semantic similarity 
between sentence embeddings in distributed space. 
Sentence position is modeled using a hand-designed 
weighting function that assigns higher significance 
to earlier sentences, with adjustments based on 
document length. Final summaries are generated by 
ranking sentences according to a fused score from 
these three metrics. To support evaluation, the authors 
introduced the Tor Illegal Documents Summarization 
(TIDSumm) dataset, specifically built to assist law 
enforcement agencies in analyzing web documents 
from the Tor network. Empirical outcomes showed 
that SummCoder performed on par with or better than, 
several state-of-the-art approaches across various 
ROUGE metrics on DUC 2002, blog summarization 
datasets, and TIDSumm.

Jindal & Kaur (2020) developed an unsupervised 
approach to summarizing bug reports, aiming to 
capture both overall content and specific software-
related details. Their method begins with automated 
keyword extraction using TF–IDF, followed by 
ranking of key sentences. To reduce redundancy, fluid 
C-means clustering is applied with thresholding, and 
a rule motor informed by domain knowledge selects 
the most relevant sentences. Additional hierarchical 
clustering is employed for re-ranking and improving 

coherence. The proposed approach was evaluated 
on the Apache bug report corpus (APBRC) and bug 
report corpus (BRC) using metrics, such as precision, 
recall, pyramid precision, and F-score. Experimental 
results showed substantial improvements over 
baseline methods, including BRC and logistic 
regression with crowdsourcing attributes, as well as 
existing unsupervised methods, such as Hurried and 
Centroid. The APBRC evaluation reported 78.22% 
precision, 82.18% recall, 80.10% F-score, and 
81.66 pyramid precision, highlighting the method’s 
strong performance in generating cohesive and 
comprehensive summaries.

3. Methodology
3.1. Improved MLELM–AE

The improved MLELM–AE is a hybrid neural 
network model that integrates the fast training ability 
of ELMs with the deep feature learning capability 
of AEs. Conventional ELMs typically employ only 
a single hidden layer and compute output weights 
analytically, which enables extremely fast training but 
restricts their ability to capture complex patterns. To 
address these issues, the proposed improved MLELM–
AE introduces a multilayer architecture structure as 
a deep AE. This design enables the network to learn 
hierarchical and abstract depictions of input data.

This approach is particularly designed for tasks, 
such as ATS and dimensionality reduction, where 
capturing deep semantic features is important. The 
algorithm begins by defining the network architecture, 
including the input layer size, output layer size (typically 
matching the input in AEs), and the configuration 
of hidden layers. Bias vectors and weight matrices 
are set randomly for every hidden layer. During the 
forward pass, input data are propagated through each 
hidden layer using a non-linear activation function, 
enabling the model to capture complex patterns and 
relationships within the data. The output layer then 
attempts to reconstruct the original input, consistent 
with the fundamental nature of an AE.

In contrast to traditional ELMs that depend 
exclusively on closed-form solutions to compute 
output weights, the proposed model adopts an iterative 
optimization approach. For a pre-defined number of 
iterations, the model computes the reconstruction error 
(the difference between the input and the reconstructed 
output) and updates the weights using a specified 
learning rate. This hybrid approach preserves the 
computational efficiency of ELMs in the hidden layers 
while enabling the model to adaptively fine-tune the 
output layer weights. Compared to traditional ELM 
or single-layer AEs, the proposed model demonstrates 
improved convergence.
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The innovation of the improved MLELM–AE 
stems from its integration of the fast learning capacity 
of ELMs with the deep feature extraction strength of 
multilayer AE. This design leverages fixed random 
weights in the hidden layers while allowing adaptive 
updates in the output layer, thereby enabling deep 
feature extraction at a minimal computational cost. By 
employing reconstruction loss as the training objective, 
the model is particularly well-suited for unsupervised 
learning applications. Compared with shallow 
architectures, it demonstrates superior ability to capture 
complex data representations, providing an efficient 
balance among performance, training speed, and 
architectural simplicity. The flow of data between hidden 
layers is mathematically formulated in Eq. (1):

( )i i iH g H � (1)

where βi is the output weights, T is equivalent 
to the input data X at the first layer of MLELM, βi+1 
is the output weight matrix of the ith hidden layer, 
and i+1th  layer weights are the outputs of MLELM. 
Regularized least squares were used for output layer 
weight calculation of MLELM.

The proposed improved MLELM–AE algorithm 
introduces numerous key novelties over conventional 
models, such as ELMs and AE. The main contributions 
are outlined in Table 1.

3.2. Algorithm of the Improved MLELM–AE
Input:

•   Training data: TRx
•   Number of iterations: niterations
•   Learning rate: lrate

Output:
•   Improved MLELM–AE trained model: A

a. Initialization
1.	 Describe input dimensions:
     •	 input_size, hsizes, osize (sizes of input, hidden 

layers, and output, respectively)
2.	 Initialize weights and biases for each layer:
     •	 For each layer k:

•  G[k] = random matrix of size (hsizes[k], 
input_size if k == 0

	 else hsizes[k-1])
•     h[k] = random matrix of size (hsizes[k], 1)

3.	 Initialize output weights and biases:

     •	 G_out = random matrix of size (osize, hsizes[-1])
     •	 h_out = random matrix of size (osize, 1)

b. Train the network
For each iteration in range niterations:
     1.	Forward pass:

•	 Append hdelta to hdeltas and hidden_error 
to herrors

    iv. Update weights and biases for hidden layers:
    •	 For each layer k:

•	 G[k] -= lrate * (hdeltas[k] * activations[k].T)
•	 h[k]  -= lrate * mean(hdeltas[k], axis=1, 

keepdims=True)
c. Return the trained model

•	 Return the trained model A (Improved 
MLELM–AE)

3.3. Ensemble Learning Framework for Text 
Summarization

In the proposed ensemble learning framework, 
the enhancement of sentence representations and the 
improvement of output summaries’ quality are achieved 
using an ensemble of deep learning models: The 
improved MLELM–AE, SBERT, AE, and VAE (Fig. 1). 
From the output of these models, cosine similarity 
scores are computed, followed by a voting-based fusion 
strategy, re-ranking, and optimal sentence selection.

In this approach, Word2Vec and SBERT 
semantic embedding models are first used to convert 
the input document into dense vector representations, 
effectively capturing the contextual relationships 
within the text. These embeddings are then passed 
through four parallel encoding modules: SBERT, AE, 
VAE, and the improved MLELM–AE. Each encoder 

        •   Initialize activations = [input_data]
        •   For each layer k:
             •   Compute:
               Y = activation_function(G[k] * Y + h[k])

             •   Append Y to activations
        •   Compute final output:
             output = G_out * Y + h_out

2.	 Calculate loss:
       •   Compute loss:
            loss = mean((output - activations[0])^2)

3.	 Backward pass:
    i. Compute output error and delta:
    •	 oerror = output - activations[0]
    •	 odelta = oerror
    ii. Update output weights and biases:
    •	 G_out -= lrate * (odelta * activations[-1].T)
    •	 h_out  -= lrate * mean(odelta, axis=1, 

keepdims=True)
    iii. Compute hidden layer errors:
    •	 Initialize herrors = [odelta]
    •	 For each layer k in reverse:

•	 hidden_error = G[k+1].T * herrors[-1]
•	 hdelta = hidden_error * activations[k+1] 

* (1 - activations[k+1])
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extracts sentence-level features independently, 
focusing on different aspects of sentence semantics 
and information compression. SBERT retains rich 
contextual information and deep contextual features, 
while AE and VAE reduce dimensionality and gather 
latent semantic structures. The improved MLELM–AE 
leverages the computational efficiency of extreme 
learning alongside the representational strength of 
deep learning models to enhance feature abstraction. 
Once sentence-level embeddings are formed, cosine 
similarity is computed separately for each model to 
assess sentence significance. The similarity scores are 
then integrated using a data fusion method, allowing 
the integration of diverse model perspectives. Based 
on the fused scores, sentences are re-ranked to 

prioritize informative and non-redundant content. 
Finally, the highest-ranked sentences are selected to 
form the extractive summary. This ensemble-based 
framework improves summarization effectiveness, 
semantic quality, and robustness by integrating the 
diverse capabilities of various encoding techniques.

4. Results and Discussion

4.1. Software Requirements

The proposed framework was implemented 
in PYTHON, a widely used general-purpose and 
high-level programming language that is primarily 
developed for emphasizing code readability. The 

Table 1. Novelty of the proposed improved MLELM–AE algorithm
Feature Traditional ELM AE Improved MLELM–AE
Hidden layers Single Multiple Multiple
Training Non‑iterative (closed form) Backpropagation ELM with backpropagation
Speed Fast Moderate Fast and adaptive
Output update Only output layer All layers Output and hidden layers
Loss function Classification loss Reconstruction loss Reconstruction loss (MSE)
Adaptability Low High High
Learning Randomized and no tuning Gradient‑based Hybrid: Random initialization and gradient tuning
Abbreviations: AE: Autoencoder; ELM: Extreme learning machine; MLELM: Multilayer ELM; MSE: Mean squared error.

Fig. 1. Ensemble learning framework for text summarization
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syntax of PYTHON permits developers to define 
concepts in fewer lines of code. Similarly, PYTHON 
effectively incorporates the system and works faster. 
PYTHON is used in numerous applications, including 
artificial intelligence, scientific computing, and 
automation. In addition, for many common tasks, the 
comprehensive standard library of PYTHON provides 
modules and functions.

4.2. Hardware Requirements
The hardware necessities for the proposed model 

and framework are as follows:
•	 Processor: Intel Core i5/i7
•	 Central processing unit speed: 3.20 GHz
•	 Operating system: Windows 10
•	 System type: 64-bit
•	 RAM: 4 GB

4.3. Dataset Description
The proposed improved MLELM–AE model 

was evaluated using the DUC 2002 dataset, which 
is publicly available (https://ieee-dataport.org/
documents/sentence-embeddings-document-sets-duc-
2002-summarization-task). The DUC 2002 dataset 
consists of 1,358 text documents. For experimentation, 
the dataset was divided into training, validation, and 
testing subsets. Specifically, 70% of the documents 
(950) were used for training, 10% (135) for validation, 
and the remaining 20% (271) for testing. The detailed 
hyperparameters employed in the proposed framework 
are presented in Table 2.

4.4. Performance Evaluation of the Proposed 
Improved MLELM–AE model

The performance of the proposed improved 
MLELM–AE model was compared with existing 
techniques, including AE, SBERT, and VAE, to 
demonstrate its reliability. The evaluation was 
conducted using standard metrics, such as accuracy, 
precision, recall, F-measure, sensitivity, and ROUGE-1 
score. The proposed improved MLELM–AE achieved 
superior results, with accuracy, precision, recall, 
F-measure, sensitivity, and ROUGE-1 scores of 
96.32%, 97.16%, 96.01%, 97.24%, 97.01%, and 
0.865145, respectively. In contrast, the existing 
techniques attained comparatively lower average 
performance across these metrics, as summarized 
in Table  3. These results confirm that the proposed 
improved MLELM–AE model significantly 
outperforms the baseline models in extractive text 
summarization.

Specifically, the highest accuracy of 96.32% 
was achieved by the proposed improved MLELM–AE 

model, significantly outperforming AE (91.41%), 
SBERT (90.87%), and VAE (91.48%), thereby 
confirming its robust ability to correctly identify 
relevant instances. In terms of precision (97.16%) and 
F-measure (97.24%), the proposed model exhibited 
exceptional performance, indicating its ability to 
generate highly accurate summaries or predictions 
with minimal false positives and a robust balance 
between precision and recall. Similarly, the high 
recall score (96.01%) highlights its effectiveness in 
capturing the majority of relevant outputs, ensuring 
comprehensive coverage of the target content. In 
contrast, AE, SBERT, and VAE recorded lower recall 
values of 91.03%, 91.11%, and 92.49%, respectively, 
highlighting their limitations in capturing all relevant 
elements.

The proposed improved MLELM–AE model also 
attained an outstanding ROUGE-1 score of 0.865145, 
a significant measure in text summarization that 
assesses unigram overlap between system-generated 
and reference summaries. This outperformed AE 
(0.819125), SBERT (0.805981), and VAE (0.816013), 
confirming that the summaries produced by the 
proposed model are more semantically and lexically 
aligned with human-authored summaries.

Moreover, the execution time of the improved 
MLELM–AE (50,015 ms) was shorter than that of AE 
(56,236 ms), SBERT (61,008 ms), and VAE (63,018 
ms), demonstrating efficiency without compromising 
performance (Fig.  2). Finally, the model achieved a 
low error rate (0.010766), reflecting its accuracy in 
fitting training data; nonetheless, further assessment 
on unseen datasets is required to meticulously validate 
its generalization capability.

Overall, the experimental results indicate that 
the proposed improved MLELM–AE model not only 

Table 2. Detailed hyperparameters of the models
Specifications Proposed 

improved 
MELM‑AE

AE VAE SBERT

Epoch 500 500 500 500
Activation function ReLU ReLU ReLU ReLU
Weight 
initialization

Hyperfan‑In Xavier Xavier Xavier

Learning rate 0.0001 0.008 0.017 0.124
Batch size 100 80 60 20
Optimizer Adam Adam Adam Adam
Loss function MSE MSE MSE MSE
Dropout rate% 0.2 0.5 0.4 0.3
Abbreviations: AE: Autoencoder; MLELM: Multilayer 
extreme learning machine; MSE: Mean squared 
error; ReLU: Rectified linear unit; SBERT: Sentence 
bidirectional encoder representations from transformers; 
VAE: Variational autoencoder.
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attains state-of-the-art accuracy and performance 
metrics but also offers computational proficiency, 
making it a promising approach for real-world 
applications in text summarization and related NLP 
tasks.

4.5. Comparative Analysis of the Proposed 
Ensemble Framework

A comparative analysis of the proposed 
ensemble framework and previously described 
frameworks (Hernández-Castañeda et al., 2020; 
Hernández-Castañeda et al., 2022) was conducted to 
further validate the model’s reliability. The results 
are summarized in Table 4 and Fig. 3. The proposed 
ensemble framework achieved a notably high 
ROUGE-1 score of 0.865145, primarily due to the 
incorporation of the improved MLELM–AE model. 
In contrast, the existing genetic algorithm approach 
achieved a considerably lower ROUGE-1 score of 
0.414 on the same DUC 2002 dataset. Similarly, the 

Table 4. Comparative analysis with previously described frameworks
References Techniques ROUGE‑1 score
Proposed ensemble framework in the present study AE, SBERT, VAE, and improved MLELM–AE 0.865145
Hernández‑Castañeda et al. (2022) GA 0.414000
Hernández‑Castañeda et al. (2020) GA, LDA, and TF–IDF 0.486810
Abbreviations: AE: Autoencoder; GA: Genetic algorithm; LDA: Latent Dirichlet allocation; MLELM: Multilayer extreme 
learning machine; ROUGE‑1: Recall‑Oriented Understudy for Gisting Evaluation 1; TF–IDF: Term frequency–inverse 
document frequency.

Table 3. Comparative assessment of the models
Model Accuracy % Precision % Recall % F‑Measure % ROUGE‑1 Time (ms) Error
Proposed improved 
MLELM–AE

96.32 97.16 96.01 97.24 0.905145 50,015 0.010766

AE 91.41 93.21 91.03 93.12 0.819125 56,236 0.031064
SBERT 90.87 92.47 91.11 93.52 0.805981 61,008 0.066596
VAE 91.48 93.52 92.49 94.01 0.816013 63,018 0.092872
Abbreviations: AE: Autoencoder; MLELM: Multilayer extreme learning machine; ROUGE‑1: Recall‑oriented understudy for 
gisting evaluation 1; SBERT: Sentence bidirectional encoder representations from transformers; VAE: Variational autoencoder.

Fig. 3. Comparative analysis of the proposed 
ensemble framework and previously described models 

Abbreviations: AE: Autoencoder; GA: Genetic 
algorithm; LDA: Latent Dirichlet allocation; 

MLELM: Multilayer extreme learning machine; 
ROUGE-1: Recall-Oriented Understudy for Gisting 

Evaluation 1; TF–IDF: Term frequency–inverse 
document frequency

Fig. 2. Execution time (A) and error (B) of the models 
Abbreviations: AE: Autoencoder; MLELM: Multilayer 

extreme learning machine; SBERT: Sentence 
bidirectional encoder representations from 

transformers; VAE: Variational autoencoder

B

A
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model based on a genetic algorithm, latent Dirichlet 
allocation, and TF–IDF techniques attained a lower 
ROUGE-1 score of 0.48681, which can be attributed to 
their computational complexity. These findings clearly 
demonstrate that the proposed ensemble framework 
outperforms traditional approaches in performing ATS.

5. Conclusion
ATS is a widely explored research area in the NLP 

community, as it enables the generation of concise and 
informative summaries from large volumes of text. This 
paper presents an improved ensemble learning-based 
ATS framework that incorporates the AE, SBERT, 
VAE, and improved MLELM–AE. The DUC 2002 
dataset was employed for training and evaluation. The 
research methodology involves several steps, including 
pre-processing, slang identification and filtering, part-
of-speech tagging, entity extraction, vectorization, 
ensemble modeling, similarity evaluation, re-ranking, 
and optimal sentence selection. Experimental results 
demonstrate that the proposed improved MLELM–AE 
achieved high accuracy (96.32%), precision (97.16%), 
and recall (96.01%). On the other hand, the proposed 
ensemble framework achieved a high ROUGE-1 
score of 0.865145, significantly outperforming 
existing models. These findings clearly validate the 
effectiveness of the proposed approaches in delivering 
improved ATS performance.

Acknowledgments
None.

Funding
None.

Conflict of Interest
The authors declare that they have no competing 

interests.

Author Contributions
Conceptualization: Sunil Upadhyay
Investigation: Sunil Upadhyay
Writing–original draft: Sunil Upadhyay
Writing–review and editing: All authors

Availability of Data
Data sharing is not applicable to this article as no 

datasets were generated or analyzed during the present 
study.

References
Adelia, R., Suyanto, S., & Wisesty, U.N. (2019). 

Indonesian abstractive text summarization using 
bidirectional gated recurrent unit. Procedia 
Computer Science, 157, 581–588.

	 https://doi.org/10.1016/j.procs.2019.09.017
Akter, S., Asa, A.S., Uddin, M.P., Hossain, M.D., 

Roy, S.K., & Afjal, M.I. (2017). An Extractive 
Text Summarization Technique for Bengali 
Document(s) using K-Means Clustering 
Algorithm. In: Proceedings of the 2017 IEEE 
International Conference on Imaging, Vision and 
Pattern Recognition (icIVPR). IEEE, p1–6.

	 https://doi.org/10.1109/ICIVPR.2017.7890883
Alami, N., Meknassi, M., & En-nahnahi, N. (2019). 

Enhancing unsupervised neural networks based 
text summarization with word embedding 
and ensemble learning. Expert Systems with 
Applications, 123, 195–211.

	 https://doi.org/10.1016/j.eswa.2019.01.037
Alotaibi, A., & Nadeem, F. (2025). An unsupervised 

integrated framework for Arabic aspect-
based sentiment analysis and abstractive 
text summarization of traffic services using 
transformer models. Smart Cities, 8(2), 62.

	 https://doi.org/10.3390/smartcities8020062
Alzuhair, A., & Al-Dhelaan, M. (2019). An approach 

for combining multiple weighting schemes and 
ranking methods in graph-based multi-document 
summarization. IEEE Access, 7, 120375–120386.

	 https://doi.org/10.1109/access.2019.2936832
Dave, H., & Jaswal, S. (2015). Multiple Text 

document summarization system using hybrid 
summarization technique. In: Proceedings of 
the 2015  1st  International Conference on Next 
Generation Computing Technologies (NGCT), 
IEEE, p804–808.

	 https://doi.org/10.1109/ngct.2015.7375231
Dilawari, A., Khan, M.U.G., Saleem, S., Zahoor-Ur-

Rehman, & Shaikh, F.S. (2023). Neural attention 
model for abstractive text summarization using 
linguistic feature space. IEEE Access, 11, 
23557–23564.

	 https://doi.org/10.1109/access.2023.3249783
Ding, J., Li, Y., Ni, H., & Yang, Z. (2020). Generative 

text summary based on enhanced semantic 
attention and gain-benefit gate. IEEE Access, 8, 
92659–92668.

	 https://doi.org/10.1109/access.2020.2994092
Du, Y., & Huo, H. (2020). News text summarization 

based on multi-feature and fuzzy logic. IEEE 
Access, 8, 140261–140272.

	 https://doi.org/10.1109/access.2020.3007763
Elbarougy, R., Behery, G., & El Khatib, A. (2020). 

Extractive Arabic text summarization using 
modified PageRank algorithm. Egyptian 

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X


DOI: 10.6977/IJoSI.202510_9(5).0001
S. Upadhyay & H. K. Soni/Int. J. Systematic Innovation, 9(5), 1-13 (2025)

12

Informatics Journal, 21(2), 73–81.
	 https://doi.org/10.1016/j.eij.2019.11.001
El-Kassas, W.S., Salama, C.R., Rafea, A.A., 

& Mohamed, H.K. (2020). EdgeSumm: 
Graph-based framework for automatic text 
summarization. Information Processing and 
Management, 57(6), 102264.

	 https://doi.org/10.1016/j.ipm.2020.102264
Gambhir, M., & Gupta, V. (2017). Recent automatic 

text summarization techniques: A  survey. 
Artificial Intelligence Review, 47(1), 1–66.

	 https://doi.org/10.1007/s10462-016-9475-9
Hassan, A.Q.A., Al-Onazi, B.B., Maashi, M., 

Darem, A.A., Abunadi, I., & Mahmud, A. (2024). 
Enhancing extractive text summarization using 
natural language processing with an optimal 
deep learning model. AIMS Mathematics, 9(5), 
12588–12609.

	 https://doi.org/10.3934/math.2024616
Hernández-Castañeda, Á., García-Hernández, R.A., 

& Ledeneva, Y. (2023). Toward the automatic 
generation of an objective function for 
extractive text summarization. IEEE Access, 11, 
51455–51464.

	 https://doi.org/10.1109/access.2023.3279101
Hernández-Castañeda, Á., García-Hernández, R.A., 

Ledeneva, Y., & Millán-Hernández, C.E. (2020). 
Extractive automatic text summarization based 
on lexical-semantic keywords. IEEE Access, 8, 
49896–49907.

	 https://doi.org/10.1109/access.2020.2980226
Hernández-Castañeda, Á., García-Hernández, R.A., 

Ledeneva, Y., & Millán-Hernández, C.E. (2022). 
Language-independent extractive automatic text 
summarization based on automatic keyword 
extraction. Computer Speech and Language, 71, 
101256.

	 https://doi.org/10.1016/j.csl.2021.101267
Jadhav, A., Jain, R., Fernandes, S., & Shaikh, S. (2019). 

Text Summarization using Neural Networks. 
In 2019  6th  IEEE International Conference on 
Advances in Computing, Communication and 
Control (ICAC3).

	 https://doi.org/10.1109/icac347590.2019.9036739
Jain, A., Bhatia, D., & Thakur, M.K. (2017). 

Extractive text summarization using word vector 
embedding. In: 2017 International Conference 
on Machine Learning and Data Science (MLDS), 
p51–55.

	 https://doi.org/10.1109/mlds.2017.12
Jindal, S.G., & Kaur, A. (2020). Automatic keyword and 

sentence-based text summarization for software 
bug reports. IEEE Access, 8, 65352–65370.

	 https://doi.org/10.1109/access.2020.2985222
Joshi, A., Fidalgo, E., Alegre, E., & Fernández-Robles, L. 

(2019). SummCoder: An unsupervised framework 

for extractive text summarization based on deep 
auto-encoders. Expert Systems with Applications, 
129, 200–215.

	 https://doi.org/10.1016/j.eswa.2019.03.045
Khan, B., Usman, M., Khan, I., Khan, J., Hussain, D., 

& Gu, Y.H. (2025). Next-generation text 
summarization: A  T5-LSTM FusionNet hybrid 
approach for psychological data. IEEE Access, 
13, 1–15.

Liang, Z., Du, J., & Li, C. (2020). Abstractive 
social media text summarization using 
selective reinforced Seq2Seq attention model. 
Neurocomputing, 410, 432–440.

	 https://doi.org/10.1016/j.neucom.2020.04.137
Madhuri, J.N., & Kumar, R.G. (2019). Extractive 

Text Summarization using Sentence Ranking. 
In: Proceedings of the 2019 International 
Conference on Data Science and Communication 
(IconDSC), p1–3.

	 https://doi.org/10.1109/icondsc.2019.8817040
Mitra, M., Buckley, C., & Research, S. (2000). 

Automatic Text Summarization by Paragraph 
Extraction. Available from: https://www.
researchgate.net/publication/2457789 [Last 
accessed on 2025 Sep 09].

Moradi, M., Dorffner, G., & Samwald, M. (2020). 
Deep contextualized embeddings for quantifying 
the informative content in biomedical text 
summarization. Computer Methods and 
Programs in Biomedicine, 184, 105117.

	 https://doi.org/10.1016/j.cmpb.2019.105117
Onan, A., & Alhumyani, H. (2024b). Contextual 

hypergraph networks for enhanced extractive 
summarization: Introducing multi-element 
contextual hypergraph extractive summarizer 
(MCHES). Applied Sciences, 14(11), 4671.

	 https://doi.org/10.3390/app14114671
Onan, A., & Alhumyani, H.A. (2024a). FuzzyTP-BERT: 

Enhancing extractive text summarization with 
fuzzy topic modeling and transformer networks. 
Journal of King Saud University - Computer and 
Information Sciences, 36(6), 102080.

	 https://doi.org/10.1016/j.jksuci.2024.102080
Pradip, K.G., & Patil, D.R. (2016). Summarization 

of Sentences using Fuzzy and Hierarchical 
Clustering Approach. In: 2016 Symposium 
on Colossal Data Analysis and Networking 
(CDAN). IEEE. p1–7.

	 https://doi.org/10.1109/cdan.2016.7570907
Prameswari, P., Zulkarnain, Z, Surjandari, I., & Laoh, 

E. (2018). Mining Online Reviews in Indonesia’s 
Priority Tourist Destinations using Sentiment 
Analysis and Text Summarization Approach. 
In: 2017 IEEE 8th  International Conference on 
Awareness Science and Technology (iCAST). 
IEEE, p36–41.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X


DOI: 10.6977/IJoSI.202510_9(5).0001
S. Upadhyay & H. K. Soni/Int. J. Systematic Innovation, 9(5), 1-13 (2025)

13

	 https://doi.org/10.1109/icawst.2017.8256540
Qaroush, A., Abu Farha, I., Ghanem, W., Washaha, M., 

& Maali, E. (2021). An efficient single document 
Arabic text summarization using a combination 
of statistical and semantic features. Journal 
of King Saud University  -  Computer and 
Information Sciences, 33(6), 677–692.

	 https://doi.org/10.1016/j.jksuci.2019.03.010
Sanchez-Gomez, J.M., Vega-Rodríguez, M.A., & 

Pérez, C.J. (2019). Parallelizing a multi-objective 
optimization approach for extractive multi-
document text summarization. Journal of Parallel 
and Distributed Computing, 134, 166–179.

	 https://doi.org/10.1016/j.jpdc.2019.09.001
Toprak, A., & Turan, M. (2025). Enhanced automatic 

abstractive document summarization using 
transformers and sentence grouping. The Journal 
of Supercomputing, 81(4), 1–30.

	 https://doi.org/10.1007/s11227-025-07048-6
Tsai, C.F., Chen, K., Hu, Y.H., & Chen, W.K. (2020). 

Improving text summarization of online hotel 
reviews with review helpfulness and sentiment. 
Tourism Management, 80, 104122.

	 https://doi.org/10.1016/j.tourman.2020.104122
Van Lierde, H., & Chow, T.W.S. (2019). Learning 

with fuzzy hypergraphs: A  topical approach to 

query-oriented text summarization. Information 
Sciences, 496, 212–224.

	 https://doi.org/10.1016/j.ins.2019.05.020
Wan, L. (2018). Extraction Algorithm of English 

Text Summarization for English Teaching. In: 
2018 3rd International Conference on Intelligent 
Transportation, Big Data and Smart City 
(ICITBS).

	 https://doi.org/10.1109/icitbs.2018.00085
Yao, K., Zhang, L., Du, D., Luo, T., Tao, L., & 

Wu, Y. (2018). Dual encoding for abstractive 
text summarization. IEEE Transactions on 
Cybernetics. IEEE, New York.

	 https://doi.org/10.1109/tcyb.2018.2876317
Zajic, D.M., Dorr, B.J., & Lin, J. (2008). Single-

document and multi-document summarization 
techniques for email threads using sentence 
compression. Information Processing and 
Management, 44(4), 1600–1610.

	 https://doi.org/10.1016/j.ipm.2007.09.007
Zenkert, J., Klahold, A., & Fathi, M. (2018). 

Towards Extractive Text Summarization using 
Multidimensional Knowledge Representation. In: 
2018 IEEE International Conference on Electro/
Information Technology (EIT), p826–831.

	 https://doi.org/10.1109/EIT.2018.8500186

AUTHOR BIOGRAPHIES

Mr. Sunil Upadhyay received his 
M.TECH. degree from the Department 
of Computer Science and Engineering 
at RGEC Meerut, Gautam Buddha 
Technical University, formerly known 

as UPTU, Lucknow, U.P., India, in 2012. He is pursuing 
his Ph.D. degree in Computer Science and Engineering 
from Amity University, Madhya Pradesh, Gwalior, 
India. His presentsf research interest includes NLP, data 
analytics, artificial intelligence, and machine learning.

Prof. (Dr.) Hemant Kumar Soni 
completed his M. Tech. (IT) at 
Bundelkhand University, Jhansi, 
Uttar Pradesh, India, and a Doctoral 

degree in Computer Science and Engineering from 
Amity University, Madhya Pradesh, Gwalior, 
India. He has 26  years of teaching experience 
for undergraduate and post-graduate courses in 
Computer Science, and is presently working as a 
Professor in the Department of Computer Science 
and Engineering at Amity University Madhya 
Pradesh, Gwalior, India. His research interests are in 
natural language processing, data science, machine 
learning, and data mining. He published many 
research papers in Web of Science, SCI, and Scopus-
indexed journals. His research articles received high 
levels of citations in Scopus and Google Scholar. He 
is a Reviewer of many referred journals, including 
IEEE Transactions.

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X


DOI: 10.6977/IJoSI.202510_9(5).0002
Z.R. Zhang & Y.W. Chan/Int. J. Systematic Innovation, 9(5), 14-22 (2025)

14

Exploring satisfaction with military catering services using the 
service quality model and importance-performance analysis

Zu-Rong Zhang1, Ya-Wen Chan2*

1Logistics Division, Air Force Meteorological Squadron, Taipei, Taiwan, Republic of China
2Department of Health and Creative Plant-Based Food Industries, Fo Guang University, 

Yilan, Taiwan, Republic of China

*Corresponding author E-mail: ywchan@mail.fgu.edu.tw

(Received 27 March, 2025; Final version received 28 July, 2025; Accepted 15 August, 2025)

Abstract

The importance of military catering in military organizations cannot be overlooked, as it not only impacts the health 
and physical fitness of service members but also directly affects combat readiness and morale. This study focuses on 
a northern air force base, using the Parasuraman-Zeithaml-Berry service quality (SERVQUAL) model’s Gap 1 and 
Gap 5 as its framework. The aim is to investigate the perception gaps in catering service quality between food service 
providers and customer. An importance-performance analysis matrix is employed to further analyze the findings. The 
analysis reveals that, regarding “catering service quality,” food service providers who are actively serving without 
formal food service certification, and those with high school or college education, tend to place more emphasis 
on tangibility, reliability, empathy, and responsiveness. For service quality expectations, customers who possess a 
college education and have obtained a food service certification show higher expectations in tangibility and reliability 
dimensions. Younger customer, aged 18–25, who are uncertified and less experienced, report greater satisfaction with 
the catering service’s reliability, responsiveness, and assurance dimensions after their experience with the base’s 
services. Regarding the perception difference in Gap 1 of the SERVQUAL model, the study suggests that services 
should prioritize user experience and ensure transparency by publicizing findings from meal review meetings. 
Feedback can be gathered through a satisfaction mailbox to address and efficiently amend any service deficiencies. 
For Gap 5 in terms of experience, customers show particular concern for food safety measures and overall service 
quality, indicating that these areas should be maintained or enhanced. Regular training is recommended to improve 
the knowledge and effectiveness of food service providers in these critical aspects.

Keywords: Group Catering, Importance-Performance Analysis Matrix, Service Quality Model, User Satisfaction

1. Introduction
Military catering services not only fulfill basic 

nutritional needs but also play a critical role in 
supporting military operations and assurance readiness. 
Conducting academic research on the service quality 
of military catering can facilitate management and 
operational optimization, thus enhancing overall 
combat effectiveness and the well-being of military 
personnel. This study is based on the service quality 
model (SERVQUAL) and its scale proposed by 
Parasuraman et al. (1988). It targets “food service 
providers” and “customer” at an Air Force base 
in northern Taiwan, distributing questionnaires to 

investigate perceived differences in service quality 
during meal times and aiming to minimize latent risks 
in military catering services.

The objectives of this research are threefold: to 
examine the perception gap in service quality between 
“food service providers” and the “customer” (Gap 1); 
to explore the perception gap between “customer’ 
expectations” and their “actual experiences” with 
service quality in Air Force catering services (Gap 5); 
and to propose actionable improvement strategies 
for both gaps. The findings of this study are intended 
to serve as a strategic reference for military units in 
enhancing catering service quality in the future.
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2. Literature Review
2.1. Group Catering

Morgan (2004) defines group catering as a 
systematic approach to meal management that enables 
coordinated food service operations to produce meals 
that maximize customer satisfaction while ensuring 
reasonable profitability for the catering organization. 
Examples include self-service buffet arrangements, 
which minimize labor requirements and provide large 
quantities of dishes within a short time to satisfy the 
dining needs of many people.

2.2. User Satisfaction
Customer satisfaction, also known as “CS,” refers 

to the alignment of a customer’s expectations with 
their perception of having those needs met. Cardozo 
(1965) suggests that customer satisfaction increases the 
likelihood of repeat purchases and can further influence the 
willingness to buy other products. Scholars Czepiel et al. 
(1974) argue that the degree of customer satisfaction can 
be seen as an overall evaluative response within the service 
process, representing a composite of subjective reactions 
to various product attributes (Oliver, 1981). Furthermore, 
Rosenzweig and Singh (1991) emphasize that “customer 
satisfaction” should be measured individually across 
the performance of each attribute of a product, with 
these individual scores aggregated to produce an overall 
satisfaction measure. In summary, both customer 
satisfaction and overall satisfaction vary depending on the 
industry and the specific research subjects.

2.3. Service Quality Model and Service Quality
The SERVQUAL defines service quality based 

on the customer’s experience throughout the service 
process. Wyckoff (1984) suggests that service quality 
is achieved by meeting the immediate needs of the 
customer, a perspective closely tied to the existing 
brand image (Sasser, Olsen, & Wyckoff, 1978).  
In contrast, Gronroos (1982) posits that service 
quality is determined by comparing the consumer’s 
“expectations” with their “actual experiences.” 
Lehtinen and Lehtinen (1982) further conceptualize 
service quality across three dimensions, interaction, 
tangibility, and communality, arguing that service 
quality should be evaluated from the customer’s 
perspective. According to their view, the quality 
valued by customers is derived from both the service 
process and the outcome.

The SERVQUAL utilized in this study is based 
on the SERVQUAL scale, developed by the scholars in 
1988, for measuring service quality. A brief overview 
is provided below:

(i)	 Tangibility
	 In the service process, tangible aspects emphasize 

the actual service experience, encompassing all 
physical elements or sensations encountered 
during dining. This includes the environment, 
equipment, facilities, staff, decor, scent, hygiene, 
and even the attitude and demeanor of personnel in 
delivering service to customers (Kazarian, 1983).

(ii)	 Reliability
	 Reliability reflects the customer’s expectation 

beyond simply satisfying hunger; it includes the 
desire for dependable food, service, facilities, 
environment, safety, hygiene, and everything 
pertinent to the customer’s dining experience.

(iii)	 Assurance
	 Assurance complements tangibility, signifying 

the politeness and respect service staff 
demonstrate toward customers while providing 
food or services. It builds trust and confidence 
in the service staff’s overall performance, thus 
contributing to customer satisfaction.

(iv)	 Responsiveness
	 Unforeseen incidents and even disasters are 

unpredictable. Through training, service staff 
can enhance their responsiveness and learn to 
appropriately assist customers when problems 
or mishandlings arise. Effective remediation can 
even encourage customer loyalty and increase 
the likelihood of repeat visits.

(v)	 Empathy
	 According to Maslow’s hierarchy (Maslow, 

1943) of needs, the need for esteem is reflected 
here, where customers seek respectful treatment 
from service staff. Empathy focuses on delivering 
personalized attention and the most suitable 
service, ensuring a satisfying dining experience 
for customers (Maslow, 1943).

In 1985, Parasuraman et al. at Cambridge 
University developed the SERVQUAL. This model 
emphasizes the core idea that “the customer is 
the determinant of service quality.” Within this 
service quality framework, there are five gaps, each 
highlighting critical areas that must be addressed to 
ensure customer satisfaction with the service. The 
model suggests that bridging these five service quality 
gaps is essential to achieving customer satisfaction 
(Fig. 1).

3. Research Methodology
3.1. Data Collection and Analysis Method

This study adopts the SERVQUAL as its research 
methodology and utilizes the SERVQUAL scale to 
develop a service quality satisfaction questionnaire. 
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The questionnaire targets “food service providers” and 
“customer” at an Air Force base in northern Taiwan. 
The study focuses on Gaps 1 and 5 of the SERVQUAL 
service quality model as the basis for questionnaire 
items, and the design incorporates the five dimensions 
from the revised SERVQUAL scale.

“Food service providers” refers to those 
responsible for menu design, calculating the number 
of diners, procuring ingredients, and organizing and 
preparing meals within the base. These personnel 
may include externally hired chefs or in-house mess 
staff. “Customer” includes both military and civilian 
personnel at the base who utilize group catering 
services. In this study, the term refers specifically to 
catering service managers and operators, including 
those with responsibilities for planning, oversight, and 
execution.

A single structured questionnaire was employed 
in this study, comprising three sections: the first section 
collected respondents’ demographic information; 
the second section assessed the service quality of 
institutional catering services; and the third section 
evaluated overall user satisfaction with the group meals. 
All three sections adopted consistent item designs and 
utilized a five-point Likert scale for measurement, 
thereby ensuring comparability across constructs. This 
design allowed the researchers to derive both Gap 1 
and Gap 5 using a single questionnaire instrument.

3.2. Measurement Tools
The research framework is structured as follows:

•	 Gap 1: The difference between “catering 
managers’ perception of customer’ expectations” 
and “customer’ expectations of catering service 
quality”

•	 Gap 5: The difference between “customer’ 
expectations of catering service quality” and 
“customer’ experience with catering service 
quality” (Fig. 2).

4. Data Analysis and Results
A total of 460 valid questionnaires were collected 

in this study, distributed among “food service providers” 
and “customer.” The detailed analysis is as follows:

For the food service provider’s dimension, 
170 valid questionnaires were collected. Among the 
respondents, 52% were male and 48% female. Most 
respondents were non-military staff (39%), followed 
by volunteer service members (30%), with active 
duty and reserve duty each accounting for 11%, and 
conscripts at 9%. In addition, 61% were military 
personnel, while 39% were in-house contracted staff.

In the customer dimension, 290 valid 
questionnaires were obtained. Demographic analysis 
showed a majority of male respondents (65%) 
compared to female respondents (35%). The majority 
were reserve duty members (68%), followed by 
conscripts (16%), volunteer service members (10%), 
active duty (4%), and non-military staff (2%).

4.1. Reliability and Validity Analysis
For the formal questionnaire, the Cronbach’s 

alpha values were as follows: 0.94 for “food service 
providers,” 0.95 for “customer’ expectations,” and 
0.96 for “customer’ actual experiences,” indicating a 
high level of reliability. Regarding validity, the Kaiser-
Meyer-Olkin (KMO) and Bartlett’s test of sphericity for 
the six dimensions—tangibility, reliability, assurance, 
responsiveness, empathy, and overall satisfaction—
were 0.83, 0.81, 0.74, 0.80, 0.64, and 0.84, respectively. 
Although the KMO for the empathy dimension was 
0.64 (slightly below the 0.7 threshold), it was within 
the acceptable range and therefore retained. All other 
dimensions had KMO values above 0.7, indicating 
good validity of the questionnaire. All Bartlett’s tests 
of sphericity were statistically significant at p<0.001, 
confirming the suitability of the data for factor analysis.

4.2. Reliability and Validity Analysis
4.2.1. Reliability Analysis

After pilot testing and item screening, the internal 
consistency of each questionnaire was examined. 

Fig. 2. Research framework diagram

Fig. 1. Service quality model (SERVQUAL) 
Source: Blackett (1988); Parasuraman et al. (1985)
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The overall Cronbach’s alpha coefficients were as 
follows: 0.94 for the “institutional catering staff” scale, 
0.95 for the “customer’ expectations” scale, and 0.96 
for the “customer’ perceived experience” scale.
(i)	 Reliability of the institutional catering staff scale:

Tangibles (6 items): Cronbach’s α = 0.82
Reliability (6 items): Cronbach’s α = 0.82
Assurance (4 items): Cronbach’s α = 0.77
Responsiveness (5 items): Cronbach’s α = 0.85
Empathy (3 items): Cronbach’s α = 0.65
Overall satisfaction (5 items): Cronbach’s α = 0.85.

Although the alpha coefficient for the “Empathy” 
dimension was slightly below the commonly accepted 
threshold of 0.70, it was retained as it remains within 
the marginally acceptable range. All other dimensions 
showed acceptable reliability, indicating that the 
questionnaire demonstrates strong internal consistency.
(ii)	 Reliability of the customer’ expectations scale:

Tangibles (6 items): Cronbach’s α = 0.89
Reliability (6 items): Cronbach’s α = 0.93
Assurance (4 items): Cronbach’s α = 0.90
Responsiveness (5 items): Cronbach’s α = 0.86
Empathy (3 items): Cronbach’s α = 0.86
Overall satisfaction (5 items): Cronbach’s α = 0.89

All dimensions achieved alpha values exceeding 
0.70, indicating a high degree of internal reliability.
(iii)	 Reliability of the customer’ perceived experience 

scale:
Tangibles (6 items): Cronbach’s α = 0.92
Reliability (6 items): Cronbach’s α = 0.94
Assurance (4 items): Cronbach’s α = 0.90
Responsiveness (5 items): Cronbach’s α = 0.92
Empathy (3 items): Cronbach’s α = 0.85
Overall satisfaction (5 items): Cronbach’s α = 0.92
All dimensions yielded Cronbach’s alpha 

values above the 0.70 threshold, confirming the 
questionnaire’s reliability.

4.2.2. Factor Analysis
This section presents the KMO values and 

Bartlett’s test of sphericity results for each dimension.
(i)	 Factor analysis of the institutional catering staff 

scale:
Tangibles (6 items): KMO = 0.83
Reliability (6 items): KMO = 0.81
Assurance (4 items): KMO = 0.74
Responsiveness (5 items): KMO = 0.80
Empathy (3 items): KMO = 0.64
Overall satisfaction (5 items): KMO = 0.84

Although the KMO value for the “Empathy” 
dimension was slightly below the 0.70 threshold, it was 
considered marginally acceptable and thus retained. 
All other dimensions reported KMO values above 

0.70, indicating sampling adequacy and supporting the 
suitability of the data for factor analysis.

4.3. Correlation Analysis
In this study, the p-value between customer’ 

expectations and actual experiences was 0.000 for 
all dimensions, with Pearson correlation coefficients 
all below 0.01, indicating a moderate positive 
correlation across the dimensions. This result confirms 
a correlation between the expectations and experiences 
of customer. It substantiates the hypothesis that a 
service gap exists between food service, users’ service 
quality, and customer’ expectations, as well as a gap 
between customer’ expectations of catering service 
quality and their satisfaction after the experience.

4.4. Importance-Performance Analysis (IPA) Matrix
To further understand the differences between 

the two gaps, this study employs the IPA matrix as an 
analytical tool (Martilla & James, 1977).

Gap 1: The gap between “catering staff’’s 
perception of customer’ expectations” and “customer’ 
expectations of catering service quality” (Fig. 3).
(i)	 Quadrant I: Keep up the good work (high 

expectation and high satisfaction).
	 •	 Tangibility:
	 Item 2: Food service provider’s attire is clean 

and orderly.
	 Item 3: Dining environment and hygiene quality 

are good.
	 Item 4: Provided meals adhere to refrigeration 

at 7°C and freezing at −18°C, with measures to 
prevent cross-contamination risks.

	 Item 5: Hot dishes meet the standard core 
temperature of above 60°C.

	 Item 8: Meals are provided on time.

Fig. 3. Analysis matrix for “Gap 1” 
Abbreviations: ASS: Assurance; EMP: Empathy; 

REL: Reliability; RES: Responsiveness; SAT: Overall 
satisfaction; TAN: Tangibility. Source: Compiled by 

this study
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	 •	 Reliability:
	 Item 2: food service providers have obtained 

relevant food service certifications.
	 Item 3: Adequate preventive measures are in 

place under pandemic conditions, such as weekly 
disinfection and environmental sanitation per 
meal during outbreaks.

	 Item 4: Catering following the nutritional balance 
in accordance with the base mission requirements.

	 Item 5: The food is fresh.
	 Item 6: Cleanliness of food containers and 

ingredients is well-maintained.
	 •	 Assurance:
		  Item 2: Reliable services are provided.
		  Item 4: Food is used within its expiration date.
	 •	 Empathy:
		�  Item 6: Clear and accessible complaint 

channels for catering services.

(ii)	 Quadrant II: Overly effortful (low expectation 
and high satisfaction).

•	 Overall Satisfaction:
	 Item 3: Overall food portion is adequate.
	 Item 4: Satisfaction with the overall taste of 

food.
	 Item 5: Good variety in food selection.

(iii)	 Quadrant III: Low-priority improvement (low 
expectation and low satisfaction).

•	 Responsiveness:
	 Item 1: Food service providers do not ignore 

issues due to busyness.
	 Item 2: Questions raised by users are answered 

accurately.
	 Item 5: Food delivery personnel are quick, quiet, 

and precise.
	 Item 6: Quality service is provided on the first 

attempt.
•	 Overall satisfaction:
	 Item 1: Overall food quality is good.
	 Item 2: Overall dining environment hygiene is 

satisfactory.

(iv)	 Quadrant IV: Concentrate here (high expectation 
and low satisfaction).

•	 Tangibility:
	 Item 6: Food containers are structurally sound 

without cracks or damage.
•	 Reliability:
	 Item 7: Effective oversight of daily potential 

food safety incidents.
•	 Assurance:
	 Item 1: Actual dishes served are consistent with 

the menu.
	 Item 5: Food service providers prioritize users’ 

rights in food service.

•	 Responsiveness:
	 Item 4: Issues raised are actively addressed by 

the catering unit.
•	 Empathy:
	 Item 3: Routine review of catering errors.
	 Item 5: The catering unit shows proactive 

concern for users.
Gap 5: The difference between “customer’ 

expectations of catering service quality” and 
“customer’ experience with catering service quality” 
(Fig. 4).
(i)	 Quadrant I: Keep up the good work (high 

expectation and high satisfaction).
	 •	 Tangibility:
	 Item 2: food service provider’s attire is clean and 

orderly.
	 Item 4: Meals provided adhere to refrigeration 

standards of 7°C and freezing standards of −18°C, 
with measures to prevent cross-contamination.

	 Item 5: Hot dishes maintain a core temperature 
standard of above 60°C.

	 •	 Reliability:
	 Item 2: food service providers have obtained 

relevant food service certifications.
	 Item 3: Adequate preventive measures, such as 

weekly disinfection of the dining area and daily 
sanitation during outbreaks.

	 Item 4: Meals are nutritionally balanced 
according to base mission requirements.

	 Item 5: The meal is fresh.
	 Item 4: Cleanliness of food containers and 

ingredients is well-maintained.
	 •	 Assurance:
	 Item 4: Food is used within its expiration date.
	 •	 Empathy:
	 Item 3: Routine review of catering errors.

Fig. 4. Gap 5 analysis matrix 
Abbreviations: ASS: Assurance; EMP: Empathy; 

REL: Reliability; RES: Responsiveness; SAT: Overall 
satisfaction; TAN: Tangibility. Data Source: Compiled 

by this study
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	 Item 5: The catering unit shows proactive 
concern for users.

(ii)	 Quadrant II: Overly effortful (low expectation 
and high satisfaction).

•	 Tangibility:
	 Item 3: Dining environment and hygiene quality 

are good.
	 Item 6: Food containers are structurally sound 

without cracks or damage.
	 •	 Reliability:
	 Item 7: Daily food safety incidents are managed 

accurately.
	 •	 Assurance:
	 Item 1: Dishes served are consistent with the 

menu.
	 Item 2: The service provided is reliable.
	 Item 5: Food service providers prioritize users’ 

rights in service.
	 •	 Responsiveness:
	 Item 4: Issues raised by users are promptly 

addressed.
	 •	 Empathy:
	 Item 6: Clear and accessible complaint channels 

for catering services.
(iii)	 Quadrant III: Low-priority improvement (low 

expectation and low satisfaction).
•	 Responsiveness:
	 Item 1: Food service providers do not ignore 

issues due to busyness.
	 Item 2: Questions raised by users are accurately 

answered.
	 Item 5: Food delivery personnel are quick, quiet, 

and precise.
	 Item 6: Quality service is provided on the first 

attempt.
•	 Overall satisfaction:
	 Item 1: Overall food quality is good.
	 Item 2: Overall dining environment hygiene is 

satisfactory.
	 Item 4: Satisfaction with the overall taste of 

food.

(iv)	 Quadrant IV: Concentrate here (high expectation 
and low satisfaction).

	 •	 Overall satisfaction:
	 Item 3: Adequate portion sizes for meals.
	 Item 5: Good variety in food selection.

These areas in Quadrant IV should be prioritized 
for review and improvement to better align with user 
expectations.

In addition, it is recommended that future 
improvements incorporate intelligent menu design 
systems that leverage big data analytics to identify the 
preferences of customer. Such systems can provide 

personalized, seasonal, and nutritionally balanced 
meal options. Furthermore, the application of modern 
cooking techniques, such as sous vide, and the adoption 
of energy-efficient smart kitchen equipment may 
enhance both meal quality and operational efficiency.

From a management perspective, it is advisable 
to implement a participatory service improvement 
mechanism, such as regularly organizing user forums 
or conducting anonymous feedback surveys, to 
enhance user engagement. Menu planning should 
incorporate local culinary characteristics and seasonal 
ingredients to promote dietary diversity and health 
orientation. Moreover, offering customized options 
for special dietary needs—such as low-carbohydrate, 
plant-based, or gluten-free meals—may further 
improve overall dining satisfaction and user loyalty.

5. Conclusion and Recommendations
This chapter presents the findings in Section 1, 

followed by practical recommendations for military 
units in Section 2.

5.1. Research Findings
For the differences in service quality perception 

by hierarchical level, the study found significant 
differences in the perceived quality of catering 
services, specifically in the SERVQUAL dimension 
of tangibility, based on the hierarchical level of 
food service providers. Higher-ranking personnel 
demonstrated a stronger focus on tangible aspects, 
including food, service, facilities, safety, and hygiene. 
This suggests that military personnel are more attuned 
to and value tangible service quality compared to 
in-house contracted staff within the northern air force 
base. Specifically, “military personnel > in-house 
contracted staff” highlights that military personnel 
are more aware and concerned about the tangible 
aspects of catering service quality than their civilian 
counterparts.

In terms of the impact of certification on the 
perception of service quality reliability, significant 
differences were observed in the SERVQUAL 
reliability dimension based on whether the food service 
providers held food service certifications. Personnel 
without certification showed a greater concern for 
reliable, trustworthy services, implying a perception 
gap between certified and uncertified staff regarding 
service reliability. Specifically, “uncertified > certified” 
highlights that uncertified food service providers place 
more importance on reliability compared to certified 
personnel at the base.

Regarding the educational background, 
perceived responsiveness, and empathy, education 
level also led to significant differences in perceptions 
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of the SERVQUAL dimensions of responsiveness and 
empathy. For empathy, “high school > university (and 
above)” indicates that high school-level personnel 
are more attentive to empathetic service, while for 
responsiveness, “university (and above) > high school” 
and “high school > junior high (and below)” suggest 
that personnel with high school or higher education 
levels prioritize responsive and empathetic services.

In summary, significant differences were 
observed across hierarchical level, certification status, 
and education level. In addition, other demographic 
factors such as gender, age, years of service, and 
military duty type were found to be non-significant in 
this analysis.

In the analysis of differences in expectations 
for catering quality in SERVQUAL dimensions 
among customer based on demographic variables, the 
analysis revealed significant differences based on food 
service certification status. Independent sample t-tests 
indicated that users with certifications placed higher 
importance on tangible aspects of catering service 
quality—such as food, service, equipment, safety, and 
hygiene—than those without certifications.

In addition, educational background also 
significantly affected expectations in the SERVQUAL 
tangibility dimension. Users with a university-level 
education or higher placed greater emphasis on tangible 
aspects of catering quality than those with a high 
school education or below, indicating a perceptual gap 
based on educational level. In summary, certification 
status and education level were significant factors, 
while gender, age, hierarchical level, military duty, and 
years of service were not.

For the differences in actual experiences of 
catering quality in SERVQUAL dimensions among 
customer, the analysis of demographic factors 
reported significant differences in the SERVQUAL 
responsiveness dimension based on food service 
certification status. Users without certifications 
reported higher responsiveness satisfaction compared 
to those with certifications, indicating that certification 
status influences perceptions of responsiveness in 
actual service experiences.

Years of service also showed significant 
differences in the assurance and responsiveness 
dimensions. Users with 1–5  years of service or 
6–10  years reported higher levels of assurance and 
responsiveness than those with over 16  years of 
service, suggesting that newer employees place a 
higher emphasis on trust and responsive service quality 
than longer-serving staff.

In addition, age significantly influenced 
perceptions of reliability, with younger users (aged 
18–25) reporting a stronger expectation for reliable 
service compared to older users (aged 46–65). This 
indicates that younger customer are more likely to 

expect dependable service post-experience compared 
to their older counterparts.

In summary, age, years of service, and 
certification status showed significant effects on the 
perception of actual experiences in catering quality, 
while gender, hierarchical level, education level, and 
military duty did not.

5.1.1. Analysis of Differences in Catering Service 
Quality Perception Between Food Service 
Providers and Customer (Gap 1)

Customer generally held lower expectations 
regarding the overall portion sizes and variety of 
meals, but reported high satisfaction after experiencing 
the catering service (Chang, 2024). Customer expected 
food service providers to maintain professional attire, 
ensure dining hygiene, conduct routine disinfection, 
maintain appropriate food temperatures (cold/hot), and 
serve meals on time. In addition, customer anticipated 
that personnel would have relevant certifications, 
provide balanced nutrition, use fresh ingredients within 
their effective dates, ensure container cleanliness, 
deliver trustworthy service, and offer accessible 
complaint channels. These expectations were generally 
met by the food service providers.

For the unmet expectations in food safety, user-
centered service, and proactive oversight, customer 
expected food service providers to ensure the structural 
integrity of food containers, rigorously control food 
safety, reliably manage meal provision, prioritize 
user rights, show proactive concern, make timely 
adjustments, and conduct routine service reviews. 
However, food service providers placed less emphasis 
on these aspects, leading to unmet expectations in 
these areas.

In terms of the unmet expectations in empathy, 
responsiveness, and overall cleanliness, customer also 
expected attentive, considerate service, prompt and 
accurate responses, and quiet, efficient service that 
delivers satisfaction in a single attempt. In addition, 
they held low expectations for overall food quality 
and cleanliness of the dining environment, and the 
performance of food service providers in these areas 
did not lead to high satisfaction among customer.

5.1.2. Analysis of Differences Between Customer’ 
Expectations and Actual Experiences of Catering 
Service Quality (Gap 5)

Customer generally had low expectations 
regarding portion size and meal variety, yet reported 
high satisfaction after experiencing these aspects of 
the catering service (Chang, 2024). They expected 
food service providers to maintain clean attire, ensure 
container and ingredient cleanliness, hold relevant 
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certifications, control food temperature (both hot and 
cold), conduct routine disinfection, provide fresh, 
balanced meals, monitor expiration dates, and review 
any service errors. They also expected personnel to 
show proactive concern for customer’ needs and these 
expectations were met with high satisfaction in their 
experience.

For the unmet expectations in hygiene, reliability, 
and accessible feedback channels, customer had high 
expectations for a hygienic dining environment, 
reliable service, a focus on user rights, responsive 
problem resolution, and accessible complaint channels. 
However, actual satisfaction post-experience was 
lower than expected, indicating a service perception 
gap in these areas.

In terms of low expectations and low satisfaction 
in responsiveness and overall quality, customer held 
low expectations for responsiveness in understanding 
user needs, accurately addressing issues, meal delivery 
efficiency, overall food quality, dining environment 
hygiene, and food flavor satisfaction. These aspects 
were also rated poorly in actual experience, reflecting 
low satisfaction and confirming that these areas did not 
meet user expectations.

5.2. Research Recommendations
Based on the research conclusions, the following 

three recommendations are proposed, covering 
cognitive service, expected service, and actual 
experience, to help military units improve group 
catering user satisfaction in the future.

5.2.1. Focus Areas for Immediate Improvement
From the perspective of customer’ experience, 

users emphasized the need for strict quality control 
over food containers, oversight of potential food safety 
incidents, consistency between served dishes and the 
menu, and prioritizing user rights in food service. In 
addition, they expect prompt responses to feedback, 
routine reviews of service errors, and proactive 
attention from catering units. The portions and variety 
of meals were also highlighted as areas with lower 
satisfaction post-experience, suggesting these should 
be prioritized for improvement. These elements are 
critical and should be the focus of immediate action, 
with food service providers responsiveness considered 
for secondary improvement.

5.2.2. Maintaining High Standards in Expected 
Service Quality

Customer reported high satisfaction with aspects, 
such as personnel appearance, professionalism, 
environmental hygiene, appropriate food temperature 

and expiration control, timely meal provision, 
trustworthy service, and accessible complaint channels. 
It is recommended that military units maintain these 
standards consistently.

5.2.3. Training and Development for Enhanced 
Service Quality

The study indicates that customers prioritize not 
only food safety and reliability but also quality service 
and responsiveness during the dining process. To 
address these needs, it is suggested that service quality 
and management-related courses be incorporated 
into training programs for food service providers to 
improve their service quality.

These recommendations aim to provide a 
reference for military units as they work to enhance 
the internal quality of group catering services.
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Abstract

Graphics processing units (GPUs) have emerged as powerful platforms for parallel computing, enabling personal 
computers to solve complex optimization tasks effectively. Although swarm intelligence algorithms naturally lend 
themselves to parallelization, a GPU-based implementation of the simplified swarm optimization (SSO) algorithm has 
not been reported in the literature. This paper introduces a compute CUDA-SSO algorithm on the CUDA platform, 
with a time complexity analysis of O (Ngen × Nsol × Nvar), where Ngen is the number of iterations, Nsol is the 
population size (i.e., number of fitness function evaluations), and Nvar represents the required pairwise comparisons. 
By eliminating resource preemption of personal best and global best updates, CUDA-SSO significantly reduces 
the overall complexity and prevents concurrency conflicts. Numerical experiments demonstrate that the proposed 
approach achieves an order-of-magnitude improvement in run time with superior solution precision relative to central 
processing unit-based SSO, making it a compelling methodology for large-scale, data-parallel optimization tasks.

Keywords: Compute Unified Device Architecture, Graphics Processing Unit, Parallelism, Simplified Swarm 
Optimization, Swarm Intelligence Algorithms

1. Introduction
In recent years, graphics processing units 

(GPUs) have significantly impacted high-performance 
computing, particularly for data-  and compute-
intensive applications. Originally designed to 
accelerate real-time three-dimensional graphics, 
GPUs now offer a parallel architecture that can handle 
massive throughput in general-purpose scientific 
computing. Thanks to the availability of thousands 
of arithmetic logic units (ALUs) and large memory 
bandwidth, personal computers equipped with modern 
GPUs have become highly effective platforms for 

performing large-scale computations (AlZubi et al., 
2020; Hachaj & Piekarczyk, 2023). This evolution 
has fueled a surge of interest in GPU-accelerated 
algorithms across diverse fields, including medical 
image processing (Corral et al., 2024; Mittal & Vetter, 
2014), energy optimization (Mortezazadeh et al., 
2022), and geospatial modeling (Hager et al., 2008).

One notable class of algorithms that can benefit 
significantly from the massive parallelism of GPUs is 
swarm intelligence (SI). Swarm intelligence algorithms 
(SIAs), such as particle swarm optimization (PSO), 
genetic algorithms (GA), and fireworks algorithms, 
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draw inspiration from natural phenomena (e.g., bird 
flocking, fish schooling, and evolutionary processes). 
By orchestrating collective behaviors, these methods 
iteratively refine candidate solutions within a high-
dimensional search space (Abbasi et al., 2020; Navarro 
et al., 2014; NVIDIA, n.d.). SIAs naturally lend 
themselves to parallel implementations, since core 
operations such as fitness evaluation and local solution 
updating occur at the per-particle or per-agent level, 
often with minimal dependency among individuals. 
Prior studies have documented considerable speedups 
when porting SIAs to GPU architectures (Tan & Ding, 
2015; Yeh, 2017; Yeh & Wei, 2012; Yildirim et al., 
2015), highlighting the strong synergy between swarm 
parallelism and GPU hardware concurrency.

Despite the demonstrated success of GPU-based 
SIAs, one variant, simplified swarm optimization 
(SSO), has received limited attention on modern parallel 
platforms. Since its inception in 2009 (Lee et al., 2012), 
SSO has proven to be an effective population-based 
search method, praised for its conceptual simplicity 
and robust performance on real-world optimization 
tasks (Corley et al., 2006; Luo et al., 2019; Yeh, 2015). 
However, existing research on SSO has primarily 
examined serial (central processing unit [CPU]-based) 
implementations, leaving a conspicuous gap regarding 
its parallel potential. By focusing on SSO, researchers 
can harness its inherently straightforward swarm-update 
rules to realize high degrees of concurrency. Moreover, 
the method’s minimal parameter requirements and 
flexible encoding scheme make it a compelling 
candidate for GPU-based large-scale optimization.

To address this gap, we propose a compute unified 
device architecture (CUDA) SSO (CUDA-SSO) 
framework under the NVIDIA CUDA environment. 
Departing from sequential SSO procedures, CUDA-
SSO capitalizes on concurrent kernel launches to 
distribute the computational workload across thousands 
of GPU threads. This design not only accelerates 
fitness evaluations, typically the most time-consuming 
step in swarm algorithms, but also introduces a parallel 
update mechanism to circumvent resource-preemption 
issues associated with personal best (pBest) and 
global best (gBest) states in swarm-based searches. 
By carefully encapsulating data in global memory and 
minimizing CPU–GPU data transfers, we demonstrate 
both improved solution quality and a drastic reduction 
in overall execution time.
The main contributions of this paper are:
(i)	 A novel GPU-based SSO framework (CUDA-

SSO) that adopts data-parallel kernels and 
reduces the theoretical time complexity of swarm 
search steps.

(ii)	 A discussion of resource conflict avoidance by 
re-structuring personal and gBest updates in a 
parallel context.

(iii)	 A comprehensive evaluation of standard 
benchmark functions, showcasing an order-of-
magnitude speedup in run time, accompanied by 
higher solution accuracy than CPU-based SSO 
implementations.
The remainder of this paper is organized as 

follows. Section 2 presents an overview of the 
classical SSO algorithm, the fundamentals of general-
purpose GPU computing, and related GPU-based 
SIAs. Section 3 details the proposed CUDA-SSO 
algorithm, including its kernel-based design, memory 
model, and theoretical time complexity analysis. 
Section 4 provides experimental results with various 
benchmark functions, comparing performance and 
precision against the baseline CPU-based SSO. 
Finally, Section 5 summarizes the findings, discusses 
potential improvements, and outlines directions for 
future work.

2. Background
Recent advances in high-performance computing 

and optimization have witnessed the integration of 
diverse approaches such as SI, evolutionary strategies, 
and gradient-based search methods. In particular, 
SIAs offer decentralized collective search capabilities, 
while gradient descent (GD) relies on local derivative 
information to iteratively refine candidate solutions. 
Understanding how these paradigms intersect—
or diverge—can shed light on algorithmic design 
principles that balance global exploration with local 
exploitation. This section introduces SSO, a data-
parallel swarm algorithm noted for its streamlined 
update rules. We then highlight key distinctions 
between GD and swarm-based approaches, discuss 
the essentials of general-purpose GPU (GPGPU) 
computing, and conclude with an overview of relevant 
GPU-based SIAs to contextualize the motivations 
behind our work on CUDA-SSO.

2.1. SSO
SSO was initially proposed by Yeh (2009) as a 

lightweight yet robust variant of SI, offering a balance 
between algorithmic simplicity and practical 
performance. Unlike more elaborate SIAs (e.g., PSO 
with velocity–position updates or GA with crossover–
mutation operators), SSO employs a small set of 
parameters (Cw, Cp, and Cg) that guide the sampling of 
new solutions from each particle’s current state ( xij

t ), 
pBest ( pij

t ), and gBest (gj). This approach obviates the 
need for velocity vectors or mutation rates, reducing 
the parameter-tuning overhead that can complicate 
other SIAs.

Fundamentally, each iteration of SSO can be 
broken into:
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(i)	 Solution update: For each solution i and variable 
j, the new solution xij

t( )+1  is drawn from one of 
three sources—current solution, pBest, or gBest 
based on probabilities (Cw, Cp, and Cg).

(ii)	 Fitness evaluation: Each updated particle is 
assigned a fitness score xij

t( )+1 .
(iii)	 Best-value updates: If f(Xi) is better than 

a particle’s pBest, it is replaced. If f(Xi) 
outperforms the current gBest, it is updated 
accordingly.

2.1.1. Fundamental concepts and update strategy
SSO operates over a population 

X ii
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Here, pi,j denotes the jth coordinate of the pBest 
of the ith solution, and gj represents the corresponding 
coordinate in gBest. The relative magnitudes of 
(Cw, Cp, and Cg) balance exploration (i.e., adopting 
global or pBests) against exploitation (i.e., retaining 
current values). This compact parameterization 
facilitates a more controlled search dynamic than in 
many other SIAs.

2.1.2. Advantages of SSO over genetic algorithms
Genetic algorithms have historically been a 

cornerstone of evolutionary computation, relying on 
crossover and mutation operations to evolve solution 
populations. However, SSO can frequently perform 

better in certain problem classes due to its simpler 
update mechanism and more focused parameter space. 
Key comparative advantages of SSO include:
(i)	 Reduced parameter tuning: Traditional GAs 

demand meticulous adjustment of crossover rates, 
mutation probabilities, and selection schemes. By 
contrast, SSO relies on three probabilities (Cw, 
Cp, and Cg) to guide each variable’s update. This 
hyperparameter reduction often translates into 
faster and more reproducible experimentation, 
minimizing the risk of suboptimal tuning.

(ii)	 Potentially faster convergence: In SSO, 
particles can directly adopt globally optimal 
positions, whereas GAs depend on randomized 
genetic operators to spread promising traits. 
Consequently, SSO may converge more rapidly 
on certain continuous or weakly multimodal 
functions, mainly when the objective landscape 
permits direct exploitation of high-fitness 
regions.

(iii)	 Implementation simplicity: GA-based crossover 
and mutation operators can become complicated 
when dealing with high-dimensional or 
heterogeneous solution representations. SSO’s 
step-function update—requiring only a few 
lines of code—facilitates implementation clarity, 
reducing the likelihood of design or coding 
errors.

(iv)	 GPU suitability: Although GAs can be parallelized, 
SSO’s probabilistic mechanism, wherein each 
variable is updated according to a small set of 
global or pBests, typically presents fewer data 
dependencies across particles. This structure 
lends itself well to massive parallelization on 
GPUs, making SSO an attractive option for large-
scale optimization tasks in high-performance 
computing environments.
Hence, SSO offers a comparatively 

straightforward and potentially more consistent 
pathway to large-scale optimization, particularly when 
research or industrial constraints limit tuning resources 
or demand high solution fidelity within compressed 
timeframes.

2.1.3. SSO flowchart
SSO’s simplicity has proven advantageous 

in several applications. For instance, Chung & 
Wahid (2012) and Yeh (2012; 2013) demonstrate 
its effectiveness in tackling complex real-world 
tasks such as reliability design and feature selection. 
Further refinements, such as orthogonal SSO (Yeh, 
2014), reinforce the adaptability of SSO’s framework. 
However, although prior literature confirms SSO’s 
suitability for large-scale research, most studies have 
employed CPUs, where time complexity grows rapidly 
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with the population size and dimensionality. This 
motivates the pursuit of a GPU-based parallelization 
strategy that can leverage SSO’s inherent data-parallel 
characteristics.

Algorithm 1 outlines the typical CPU-based SSO 
flow. Each iteration updates particles by sampling 
the step function, evaluates the fitness value for 
each particle, and updates pBests and gBest if any 
improvement is found. Although CPU-SSO can 
yield excellent results for moderate-scale problems, 
it becomes slow when the population and number of 
variables are large.

Algorithm 1. The typical CPU-based SSO
Initialize:
       Nsol = 50, Nvar = 30, Ngen = 100
       Var_max = 5.12, Var_min = -5.12
       sol = Nsol × Nvar
       pBests = Nsol × Nvar
       gBest = 0
       Cw = 0.2, Cp = 0.5, Cg = 0.8
       explorationTime = 0

while explorationTime ≤ cpuTimeLimit do
       for iter in 1 to Ngen do
       �stepFunc(sol, pBests, gBest, randNum(Var_max, 

Var_min))
        evaluate(solF, pF, gF)
         if solF < pF then pBests(i) = sol(i)
             if solF < gF then gBest = sol(i)
             end if
           end if
        end for
end while

2.2. General-Purpose GPU Computing
Modern GPUs were originally engineered 

to accelerate real-time three-dimensional graphics 
tasks such as rasterization and shading. Over time, 
these architectures evolved into GPGPU (Hussain 
et al., 2016), wherein highly parallel GPU hardware 
is repurposed to handle a variety of data-intensive 
computations. By distributing large workloads among 
thousands of arithmetic cores, developers offload 
parallel tasks to the GPU while reserving more 
complex, serial procedures for the CPU.

2.2.1. Execution model (CUDA framework)
NVIDIA’s CUDA (NVIDIA, n.d.) extends C/

C++ to enable heterogeneous computing. In CUDA, 
the following function types determine where (CPU 
vs. GPU) and how (serial vs. parallel) code is executed:
(i)	 Host functions: Host code is defined in C/

C++ and runs on the CPU. It is responsible for 
high-level logic, memory allocation, and kernel 
launch.

(ii)	 Kernel functions: GPU kernels are invoked 
by the CPU but executed on the GPU, and 
are subdivided into thread blocks and further 
organized into warps of 32 threads, following 
the single instruction, multiple threads paradigm. 
They are ideal for data-parallel workloads such 
as fitness evaluations or array/vector operations.

(iii)	 Device functions: Device functions are defined 
and executed only on the GPU and are typically 
called from within kernel functions to factor out 
repeated computations.
In this model, thousands of concurrent threads 

can be spawned to run the same kernel, allowing GPUs 
to efficiently process large, independent datasets.

2.2.2. Compute unified device architecture 
memory hierarchy

Compute Unified Device Architecture’s memory 
model separates storage into multiple tiers, each 
balancing capacity and speed.
(i)	 Registers: Per-thread registers provide high-

speed storage and are best suited for frequently 
accessed variables that do not exceed the register 
file capacity.

(ii)	 Shared memory: On-chip shared memory 
allocated per block enables fast data exchange 
among threads in the same block and is 
particularly useful for shared computations, 
partial sums, and other cooperative tasks where 
multiple threads access and modify the same 
data.

(iii)	 Global memory: Off-chip global memory 
provides large-capacity storage accessible by all 
threads but has relatively high latency compared 
to on-chip resources, making efficient access 
patterns (e.g., memory coalescing) essential to 
achieve high throughput.

(iv)	 Constant and texture memory: Read-only caches 
accelerate common look-ups and are helpful 
when all threads repeatedly use the same constant 
or when two-dimensional array access patterns 
can be optimized via texture hardware.
High-performance GPU applications often 

involve coalescing memory accesses, judiciously 
using shared memory, and minimizing branch 
divergence (warp divergence). These considerations 
ensure that multiple threads fetch contiguous elements 
simultaneously and execute consistent instruction 
paths whenever possible.

2.2.3. Data transfers and central processing unit-
GPU coordination

Since the CPU and GPU have separate memory 
spaces, data must typically be transferred via the 

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X


DOI: 10.6977/IJoSI.202510_9(5).0003
W. Zhu, S-K. Huang, etc./Int. J. Systematic Innovation, 9(5), 23-42 (2025)

27

Peripheral Component Interconnect Express (PCIe) 
bus. Although essential for many GPGPU workflows, 
these transfers introduce non-negligible latency. 
Strategies to reduce transfer overhead include:
(i)	 Batching data: Copying large chunks of data at a 

time rather than frequent small transfers.
(ii)	 Asynchronous transfers: Overlapping data 

transfers with kernel execution improves device 
utilization.

(iii)	 Unified Memory: Leveraging CUDA’s managed 
memory features to let the runtime handle page 
migrations between CPU and GPU, albeit with 
some overhead for page-fault handling.

2.2.4. Implications for SIAs
SIAs—including PSO, GA, Firefly Algorithm, 

and SSO—naturally benefit from GPGPU acceleration 
due to their population-based structure. Each 
individual (particle, agent, or chromosome) can be 
evaluated in parallel, and gBest values can be updated 
in a relatively small overhead step.
(i)	 Fitness evaluations: Commonly, the most 

significant computational bottlenecks can be 
massively parallelized by assigning a subset of 
particles (or subdimensions) to separate threads 
or warps.

(ii)	 Update mechanisms: Since SIA updates often 
involve reading global parameters (e.g., best 
solutions) and then writing back updated values 
for each particle, careful design of coalesced 
memory accesses and thread synchronization 
(e.g., to avoid race conditions when writing to a 
gBest value) is critical.

(iii)	 Data dependencies: Many SIAs only require 
limited information exchange—such as neighbor-
based or globally best-based communication—so 
the parallel workload is generally well-defined. 
Nonetheless, if a swarm’s communication 
topology is complex (e.g., hierarchical or 
multiswarm structures), the kernel must 
incorporate additional synchronization steps or 
multiple kernel launches to handle inter-group 
interactions without causing warp divergence or 
data hazards.
When population sizes or problem dimensions 

become large, GPU-enabled SIAs can harness 
thousands of parallel threads across multiple 
streaming multiprocessors (SMs), substantially 
reducing run time relative to CPU-only approaches. 
Consequently, adopting CUDA or similar frameworks 
for SIAs—while paying close attention to memory 
usage, thread management, and synchronization—can 
yield significant speedups in large-scale optimization 
scenarios. Synchronization in CUDA refers to 
coordinating the execution of threads to wait for each 

other at specific points—usually to ensure that data 
dependencies are respected (i.e., one thread does not 
read a value before another finishes writing it).

2.3. GPU-Based SIAs Implementation
Parallelization of SIAs on GPUs leverages the 

natural data-parallel structure of these methods. Within 
each iteration, every swarm particle (or agent) usually 
updates its position, evaluates its objective function, 
and exchanges information with other particles 
according to the algorithm’s communication model.

2.3.1. An Overview of notable GPU-based SIA
Table 1 provides an overview of notable GPU-

based SIAs, detailing which functions were ported to 
GPU kernels in representative studies. The summarized 
methods include standard and Euclidean PSO (Tsutsui 
& Fujimoto, 2009; W. Zhu, 2011), multichannel PSO 
(Krömer et al., 2011), multi-objective Gas (Wong, 
2009; H. Zhu et al., 2011), and GA/differential-
evolution hybrids (Mussi et al., 2011; Ruder, 2016), 
among others.

As these steps can be performed independently 
or partially synchronized, the GPU is well-suited to 
handle the large number of concurrent threads required 
to process high-dimensional populations.

2.3.2. Four key kernel functions
SIAs naturally align with parallel architectures 

due to their population-based structure (Yeh, 2017; Yeh 
& Wei, 2012). In a GPU context, typical SIA workflows 
can be divided into four key kernel functions:
(i)	 Initialize (I): Kernel Function (I) initializes the 

population with random numbers and stores them 
in global memory. Benefiting from the intuitive 
implementation and data access in global 
memory, most SIAs generated the population on 
the CPU (NVIDIA Corporation, 2012). It might 
have got a vast improvement for computing 
efficiency if (I) the population on GPU instead 
of CPU, although the way to arrange the global 
memory may not be that intuitive (Mussi et al., 
2011; Ruder, 2016).

(ii)	 Evaluate fitness (E): Krömer et al. (2011) have 
demonstrated that the most expensive step in 
SIAs was to evaluate candidate solutions. The 
most straightforward to deploy kernel function 
(E) is the master–slave paradigm, where the 
centralized controller dispatches particles in a 
single population for parallelism. This approach 
introduced no differences from an algorithmic 
perspective but reduced the time-consuming 
from a computational perspective.
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As shown in Table 1, Li & Zhang (2011) proposed 
a CUDA-based multichannel particle swarm algorithm. 
Wong (2009) implemented a parallel multi-objective 
GA. Tsutsui and Fujimoto (2009) ran a sequential SIA, 
dispatching a parallel GA for the particles.

According to NVIDIA (n.d.) and Mussi et  al. 
(2011), using shared memory in GPU code can 
guarantee speedup for data transferring. However, 
most did not perform (E) using shared memory.
(i)	 Communication (C): Unlike the directly 

distributing function (E), the function (C) proposes 
a more complicated model. It is distinguished by 
being loosely connected to the population and 
irregularly exchanging particles. Communicate 
mechanisms were enabled between swarms 
according to the law of data access, which means 
that communication between distributed groups 
of particles is acceptable.

(ii)	 Update Swarm (U): Adjust the positions or 
velocities (if applicable) of each particle based 
on shared information. Function (C) and function 
(U) do not have a single pattern to fit all SIAs. 
We must only attend to the warp divergence and 
bank conflict in these two functions.
Across these works, the (E) kernel typically offers 

the largest room for speedup, since fitness calculation 
often dominates the total run time. Many authors have 
thus focused on accelerating (E) by distributing the 
population’s fitness evaluations to GPU threads.

2.3.3. Implementation challenges
Despite the potential computational gains, 

several implementation challenges arise when porting 
SIAs to GPUs:

(i)	 Memory-access patterns and coalescing: 
Efficient GPU kernels rely heavily on coalesced 
global-memory transactions, whereby 
consecutive threads access consecutive memory 
addresses. Achieving such patterns can involve 
reorganizing particle data structures, interleaving 
population elements, or carefully aligning data to 
minimize misaligned accesses. Failure to do so 
can negate much of the theoretical speedup from 
parallelization.

(ii)	 Shared memory constraints: While shared 
memory is a low-latency on-chip resource that 
can accelerate repeated data accesses, the amount 
available per block (commonly 48 KB or less) 
may be insufficient for storing large populations 
or high-dimensional problems. Consequently, 
many GPU-based SIAs place most of their data 
in global memory and resort to shared memory 
only for small suboperations, such as partial 
sums or local best-value comparisons.

(iii)	 Warp divergence and synchronization: GPU 
threads operate in warps of 32 concurrent threads. 
If branches in the kernel cause differing execution 
paths within the same warp, performance can 
degrade significantly due to warp divergence. 
SIA kernels that incorporate random sampling, 
conditionals for updating best solutions, or 
communication topologies must minimize thread 
divergence and carefully place synchronization 
barriers (syncthreads or kernel launches) to avoid 
race conditions when reading/writing global or 
shared data structures (e.g., gBest positions).

(iv)	 Communication topologies: In many SIAs, 
information sharing is crucial for guiding the 
swarm. This communication can be ring-based, 

Table 1. Summary of studies of taxonomy analysis for swarm intelligence algorithms
References Swarm intelligence 

algorithm
Methodology Speedup

Tsutsui & Fujimoto 
(2009)

Stand particle swarm 
optimization (PSO)

(I), (C), (U) on CPU. (E) on a GPU without shared 
memory

×6–8

W. Zhu (2011) Euclidean PSO (I), (C), (U) on CPU. (E) on a GPU without shared 
memory

×1–5

Krömer et al. (2011) Multichannel PSO (U) on CPU, (I), (E), (C) on a GPU without shared 
memory

×30

Wong (2009) Multi‑objective genetic 
algorithm (GA)

(I) on CPU, (E), (C), (U) on a GPU without shared 
memory

10–2

H. Zhu et al. (2011) Coarse‑grain 
parallelization of GA

(I), (C), (U) on CPU, (E) on a GPU only without shared 
memory

×60

Li & Zhang (2011) Asynchronous and 
synchronous PSO

(I), (E), (C), (U) on a GPU with shared memory ‑

Mussi et al. (2011) GA (I), (E), (C), (U) on a GPU with shared memory ×2–12
Ruder (2016) GA and differential 

evolution (DE)
(I), (E), (C), (U) on a GPU with shared memory and 
synchronization

×3–28 for GA, 
×19–34 for DE

Abbreviations: C: Communication; E: Evaluate fitness; I: Initialize; U: Update swarm
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star-based, hierarchical, or fully connected. 
Implementing these topologies on a GPU requires 
balancing frequent data exchanges with the cost of 
global or shared-memory transactions, especially 
as the population grows. Some researchers 
tackle this by employing loosely coupled 
subswarms, reducing the number of cross-group 
communications and associated overhead.

(v)	 Scalability and precision: GPU-based SIAs often 
demonstrate significant speedups over CPU 
counterparts when the population size is large 
enough to saturate GPU resources. However, if 
the swarm or dimensionality is too small, kernel-
launch overhead and data-transfer latencies may 
outweigh parallelization benefits. Furthermore, 
some applications demand higher-precision 
arithmetic (e.g., double precision) that can 
reduce throughput on specific GPU architectures. 
Algorithm designers must thus tune swarm sizes, 
memory layouts, and data precision settings for 
optimal results.
These considerations indicate that GPU-based 

SIAs benefit most when carefully tailored to exploit 
hardware concurrency while mitigating memory and 
synchronization bottlenecks. Ongoing advances in 
GPU architectures—expanded on-chip memory, more 
sophisticated warp schedulers, and built-in library 
support—continue to ease the adaptation of SIAs for 
large-scale, real-world optimization problems.

Building on these insights, the present work aims 
to extend SSO into the GPU domain, integrating the 
conceptual simplicity of SSO’s update mechanism 
with the massive parallelism of CUDA. Our proposed 
CUDA-SSO applies kernel-based parallelization 
to SSO’s most time-consuming and data-parallel 
steps, achieving significant speed gains and avoiding 
concurrency conflicts when updating personal and 
gBest states. In the following section, we elaborate on 
the algorithmic framework of CUDA-SSO, including 
memory organization, random number generation, and 
a theoretical complexity analysis.

3. Compute Unified Device Architecture-SSO
Compute Unified Device Architecture-SSO 

adapts the conventional SSO to leverage CUDA’s 
parallelism. As illustrated in Fig.  1, each kernel 
function runs concurrently across threads, reducing 
both evaluation time and memory transaction overhead.

3.1. Random Number Generation
Random number generation (RNG) is essential 

in SIAs because almost every aspect of the search—
particle initialization, stochastic exploration, and 
crossover/mutation (in other SIAs)—depends on 

drawing pseudo-random values. In CUDA-SSO, 
these numbers govern how each variable in a particle 
decides whether to retain its current value, adopt its 
pBest, or adopt the gBest. As a result, generating 
robust random values at high speed is critical to ensure 
both algorithmic performance and solution diversity.

A naive approach to RNG would compute 
random numbers on the CPU and then transfer them to 
the GPU each iteration. However, such data movement 
across the PCIe bus can introduce significant latency. 
Instead, CUDA-SSO uses NVIDIA’s cuRAND 
(random number generation library (NVIDIA, n.d.) 
to generate random numbers directly on the GPU, 
thereby reducing CPU–GPU switching overhead. 
The following points highlight key considerations for 
efficient RNG in CUDA-SSO.
(i)	 cuRAND generators: NVIDIA’s cuRAND library 

provides multiple generator types (e.g., Philox, 
Mersenne Twister, and XORWOW) suited to 
various performance and quality requirements. 
Philox typically offers a good balance for most 
GPU-based Monte Carlo or optimization tasks 
due to its combination of speed and sufficiently 
robust randomness.

(ii)	 State management: A  dedicated initialization 
kernel uses cuRAND application programming 
interfaces to set up independent RNG states for 
each thread on the GPU. Each state is assigned a 
seed, sequence number, and offset. This allows 
threads to maintain independent RNG states, 
avoiding global memory contention during the 
main kernel execution.

(iii)	 Scalability: Due to CUDA-SSO allocating one or 
more threads per particle/variable, the number of 
random values can become quite large, reaching 
Nsol × Nvar × Ngen. However, cuRAND’s 
batched generation methods allow bulk requests 
of random values, leveraging GPU concurrency 
to rapidly produce millions of samples.

(iv)	 Memory footprint and access: RNG states 
are typically stored in global memory for all 
threads to access during kernel execution, 
with each thread updating its local state after 
retrieving random samples via curand (& state). 
To minimize overhead, threads often load their 
RNG state into registers, generate all required 
samples, and write the state back to global 
memory only once per iteration, reducing global 
memory transactions.

(v)	 Kernel integration: Each thread within the main 
CUDA-SSO search kernel can invoke cuRAND 
library calls to draw random floats (e.g., uniform 
or normal distributions) and apply them to the 
SSO step function. While careful synchronization 
may be necessary if multiple threads share RNG 
states, this is typically avoided by assigning 
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unique states to each thread.
(vi)	 Quality versus speed: While XORWOW 

offers faster performance, it may exhibit lower 
randomness quality for specific statistical tests. 
Although Philox or Mersenne Twister variants 
may run slightly slower, they often deliver 
more reliable distributions. While most swarm 
optimizations work well with any reasonably 
distributed, uncorrelated RNG, mission-critical 
or precision-sensitive applications may require 
more robust generators.
By generating all random numbers on the GPU, 

CUDA-SSO avoids frequent PCIe transfers and ensures 

that random samples are available on demand with 
minimal latency. This strategy significantly improves 
the algorithm’s scalability, allowing Nsol × Nvar × Ngen 
random draws to be produced efficiently as the swarm 
evolves. Consequently, RNG bottlenecks, which often 
plague GPU-accelerated optimization, are effectively 
mitigated, paving the way for faster and more diverse 
exploration in the high-dimensional search space.

3.2. Thread Organization
Efficient thread organization is a cornerstone of 

high-performance GPU applications, and CUDA-SSO 

Fig. 1. Proposed compute unified device architecture-simplified swarm optimization
Abbreviations: C: Communication; CPU: Central processing unit; E: Evaluate fitness; gBest: Global best; 

GPU: Graphics processing unit; I: Initialize; pBests: Personal bests; PSSO: Particle-based simplified swarm 
optimization; U: Update swarm
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takes advantage of CUDA’s execution hierarchy to 
maximize throughput and minimize uncoalesced 
memory accesses. This section details how thread 
blocks, warps, and memory layouts are arranged to 
accommodate large particle populations and high-
dimensional search problems.

3.2.1. Warp-level particle management
In CUDA-SSO, each warp—consisting of 32 

threads—typically maps to one particle, such that the 
warp’s threads can collaboratively handle that particle’s 
variables (position vector, random updates, and fitness 
computation). This design has several advantages.
(i)	 Straightforward synchronization: Since a 

warp executes in a lockstep single-instruction 
multiple-threads fashion, synchronization within 
the warp is simpler. For many operations, native 
warp intrinsics (e.g., __syncwarp()) allow 
partial sums or shared computations to be done 
without incurring the overhead of a block-wide 
synchronization (__syncthreads()).

(ii)	 Fine-grained parallelism: If a particle has Nvar 
variables, they can be distributed across multiple 
threads, allowing partial work (e.g., updating 
each variable or computing partial fitness) to 
proceed in parallel within the same warp.

(iii)	 Reduced warp divergence: Since all threads 
in a warp handle logically contiguous parts 
of the same particle, branching is minimized. 
Divergence primarily arises if the particle’s data 
triggers conditionals (e.g., random updates to 
different variables). However, these are usually 
minor compared to divergences caused by 
dissimilar data accesses across multiple particles.
Compute unified device architecture’s thread 

blocks group warps together, and a grid of blocks 
covers the entire population.

Block sizes are chosen in multiples of 32 
(e.g., 128, 256, and 512 threads/block) to ensure warp 
alignment. In CUDA-SSO, a block typically manages 
several particles—each warp in the block handles a 
separate particle’s data.

Grid sizes are determined by how many blocks 
are needed to encompass all particles. For instance, if 
the swarm has Nsol =  10,000 particles and each block 
manages eight warps, we need at least 10,000/8 = 1,250 
blocks to cover the swarm. This approach scales 
well on modern GPUs with multiple SMs capable of 
running dozens of blocks concurrently.

To fully utilize GPU bandwidth, CUDA-SSO 
arranges each particle’s data (e.g., position vector, best 
values) contiguously in global memory. When warp 
threads access consecutive addresses, coalesced reads 
reduce the required memory transactions. Key design 
elements include:

(i)	 Particle-centric layout: The position vector, 
pBest, and related metadata for each particle are 
stored back-to-back in memory. Threads within a 
warp access sequential indices, aligning memory 
requests with hardware transaction boundaries.

(ii)	 Avoiding strided access: If data for a single 
particle were scattered or interleaved with multiple 
particles, warp threads would fetch non-consecutive 
addresses, leading to uncoalesced accesses and 
lowered throughput. By contiguously grouping 
a particle’s variables, CUDA-SSO preserves 
coalescing even when the swarm is large.

(iii)	 Shared memory trade-off: Although shared 
memory can accelerate repeated data accesses 
(e.g., partial sums), large swarm sizes (hundreds 
or thousands of particles, each with tens to 
hundreds of variables) rapidly exceed the 
typical 48–96 kb shared memory per block. 
Consequently, global memory becomes the main 
data store. Nevertheless, kernel designers may 
still use shared memory for sub-operations (e.g., 
block-level reductions) if it is feasible within the 
memory budget.

3.2.2. Synchronization and concurrency
Swarm intelligence demands occasional 

synchronization to ensure that updated particle states 
or gBest values are consistently available. In CUDA-
SSO, two main synchronization patterns arise:
(i)	 Warp-level: For tasks that only require threads 

within the same warp to coordinate—such as 
partial computation of a single particle’s fitness—
warp intrinsics (__syncwarp()) suffice. This is 
faster than a full __syncthreads(), affecting all 
block threads.

(ii)	 Block-  or grid-level: Specific global or pBest 
updates may require broader synchronization:
•	 __Syncthreads() ensures all threads in the 

block finalize local data before proceeding.
•	 Multiple kernel launches act as implicit grid-

wide barriers, guaranteeing that all blocks 
complete one stage (e.g., updating pBests) 
before starting the next (e.g., computing the 
gBest).

Ensuring all local updates are complete 
before any best-value comparisons helps avoid race 
conditions, which might otherwise lead to inconsistent 
reads or partial updates of shared variables.

For huge swarms or high-dimensional search 
spaces, a single kernel launch might strain available 
GPU memory or underutilize certain multiprocessors. 
CUDA-SSO addresses these scenarios by subdividing 
the population:
(i)	 Population splitting: Instead of handling all 

NsolN_{\mathrm{sol}} particles in one kernel, the 
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swarm can be partitioned into subsets processed 
by multiple sequential kernel launches or multiple 
streams. Each subset undergoes search and fitness 
evaluation before merging partial bests.

(ii)	 Multi-kernel scheduling: Modern GPUs support 
concurrent kernels, enabling partial overlaps in 
execution. If each subset’s memory footprint is 
smaller, more streams can run concurrently on 
different SMs, improving load balancing and 
overall throughput.

(iii)	 Trade-off: Although subdividing can improve 
concurrency, it introduces additional steps for 
merging partial gBest values across subsets. 
Careful scheduling is needed so that merging 
overhead does not offset gains from improved 
load distribution.
By adhering to warp-based particle updates, 

coalesced memory access patterns, and appropriate 
synchronization, CUDA-SSO efficiently distributes 
workload across a GPU’s many SMs. In turn, this 
enables (i) high utilization, where a large swarm or high-
dimensional setting can saturate GPU computational 
resources, (ii) scalability, where as problem sizes grow, 
additional blocks and warps smoothly extend parallel 
coverage, and (iii) maintainability, where warp-level 
design keeps each particle’s logic self-contained, 
simplifying debugging and code maintenance.

Developers must still tune parameters such as block 
size, register usage, and shared-memory allocations for 
specific GPU architectures (e.g.,  differences between 
NVIDIA Turing, Ampere, or Hopper architectures). 
Nonetheless, the fundamental strategy—one warp per 
particle, coalesced global memory, and synchronization 
barriers for best-value consistency—forms a robust 
template for realizing scalable, high-performance SI 
on GPUs (Gordon & Whitley, 1993; Hadley, 1964; 
Wolpert & Macready, 1995).

3.3. Compute Unified Device Architecture-SSO 
Implementation

Leveraging GPU-based parallelism requires a 
careful design of kernel functions, memory layouts, 
and synchronization strategies. In CUDA-SSO, each 
iteration (or generation) processes a large population 
of particles on the GPU, avoiding frequent transfers 
across the PCIe bus. By dividing search, fitness 
evaluation, and best-value updates into separate 
kernels, the algorithm can efficiently harness the 
GPU’s concurrent execution model.

3.3.1. Kernel-launch structure
Algorithm 2 illustrates the main flow of CUDA-

SSO. Each generation begins with random number 

generation on the GPU, followed by parallel kernels 
for the search process (step function) and fitness 
evaluations. Afterward, pBests and the gBest are 
updated in parallel, with each block or warp managing 
a subset of particles.

Algorithm 2. Flowchart for CUDA-simplified 
swarm optimization
sol = Nsol × Nvar
pBests = Nsol × Nvar
gBest = 0
set block size
syncThreads()

Initialize population
Initialize block size
Transfer data from CPU to GPU

//Kernel functions executed in parallel
for gen = 0 to Ngen do
      Search process for all particles         �//stepFunc in 

parallel
      syncThreads()
        Update pBest for each solution          //Kernel (U)
       Update gBest for each solution       //Kernel (U)
       syncThreads()
end for

Send data back to the CPU

The above design leverages the GPU’s parallel 
capabilities to handle large numbers of particles in 
each generation and ensures that intermediate results 
are kept consistent across all threads before the next 
update commences. Here is how it works:
(i)	 Parallel kernel launches: The design separates 

operations into distinct parallel kernels for the 
search process (step function) and for updating 
pBests and gBest values. This approach enables 
the concurrent execution of computation (E) 
and communication (C) operations before 
synchronizing for updates (U).

(ii)	 Synchronization: The system uses syncThreads() 
or similar synchronization barriers to ensure 
all threads complete their current operations, 
whether searching or updating optimal values, 
before moving forward. This synchronization 
is vital for preventing race conditions and 
maintaining consistent pBests and the gBest.

(iii)	 GPU–CPU transfers: To minimize PCIe bus 
overhead, data transfers between CPU and GPU 
occur only twice: once at initialization and once 
at completion. During iterations, all population 
data remains in GPU memory, following the 
memory management guidelines outlined in 
Section 3.2.
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3.3.2. Parallel updates of pBests and gBests
Algorithms 3 and 4 illustrate how pBests and 

the gBest are updated in a parallel environment. By 
distributing the workload across GPU threads, CUDA-
SSO prevents any single update from dominating run 
time and fully exploits GPU concurrency.

Algorithm 3. Parallel updates of personal bests.
syncThreads()
for each particle i in parallel do
     Load current sol[i] and pBests[i]
     if f(sol[i]) < f(pBests[i]) then
           pBests[i] = sol[i]
       end if
end for
syncThreads()

Algorithm 4. Parallel updates of the global best.
syncThreads()
for each particle i in parallel do
     Load current pBests[i] and gBest
     if f(pBests[i]) < f(gBest) then
           gBest = pBests[i]
       end if
end for
syncThreads()

Implementation details of Algorithms 3 and 4 are 
discussed in the following:
(i)	 Warp/block-level work: Each particle is 

processed in parallel. While it is not explicitly 

stated that one warp must correspond to a single 
particle, this configuration can be achieved by 
selecting suitable block and grid sizes, thereby 
reducing warp divergence and simplifying 
synchronization.

(ii)	 Coalesced memory access: In these snippets, each 
thread (or warp) reads data stored contiguously 
in global memory for the assigned particle i. If 
both sol i and pBest i reside in adjacent memory 
locations, warp-level access requests naturally 
coalesce into fewer transactions.

(iii)	 Synchronization points: The syncThreads() calls 
at the start and end of each code block ensure 
that all local read/write operations to pBests or 
gBest finish before another kernel or step begins. 
That is, the communication for global search 
does not rely on synchronization mechanisms, as 
these typically incur substantial overhead. Such 
barriers prevent partial updates or inconsistent 
reads across parallel threads.

3.4. Time Complexity Analysis
Compared to CPU-SSO’s sequential structure, 

CUDA-SSO distributes the update and evaluation 
workload over many GPU threads, effectively 
reducing the time complexity within each iteration. 
Fig.  2 contrasts CPU-SSO’s single-thread approach 
versus CUDA-SSO’s multi-thread parallelism. While 
CPU-SSO tends to scale with O(n3) under large 

Fig. 2. The time complexity analysis
Abbreviations: C: Communication; CPU: Central processing unit; CUDA: Compute unified device architecture; 
gBest: Global best; GPU: Graphics processing unit; pBests: Personal bests; SSO: Simplified swarm optimization
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4. Experiments and Analysis

4.1. Benchmark Functions and Design of 
Experiments

We tested nine standard benchmark functions, 
shown in Table  2. These functions include both 
separable and inseparable properties, with multimodal 
and unimodal complexities. Each function has a 
dimension of Nvar = 50. By controlling parameters such 
as Ngen (the maximum iteration count), Nsol (population 
size), and Nvar (number of variables), we gauge both 
the convergence (precision) and run time (speedup) of 
CPU-SSO versus CUDA-SSO.

From Table  3, we know we need to do a 
seven-factor experimental design, 128 experiments. 
It is impossible to do such a job with contracted 
computational resources. Thus, the parameters: 
block size, Nsol, Nvar, and Ngen were arranged as 
follows: 1,024, 100, 50, and 1000, referring to other 
papers (Li & Zhang, 2011; NVIDIA Corporation, 
2012).

The remaining parameters to be tested are the 
CUDA-SSO search parameters: Cw, Cp, and Cg. Six 
parameter levels were evaluated in the experiments, 
as shown in Table 4. The experimental design of the 
parameter combinations presented in Table  4 was 
analyzed using scipy.stats library (Pllana & Xhafa, 

Table 3. Experimental parameters of compute 
unified device architecture‑simplified swarm 

optimization
No. Graphics 

processing unit 
model

Compute unified device 
architecture‑simplified 
swarm optimization

1 Block size Cw, Cp, Cg

2 ‑ Population size: Nsol

3 ‑ Number of variables: Nvar

4 ‑ Number of generations: Ngen

Table 4. Factor for the parameters of compute 
unified device architecture‑simplified swarm 

optimization search
No. Cw, Cp, and Cg
1 0.1, 0.3, 0.7
2 0.1, 0.4, 0.8
3 0.2, 0.4, 0.6
4 0.2, 0.5, 0.9
5 0.3, 0.4, 0.5
6 0.3, 0.6, 0.8

Table 6. Precision comparison for central processing unit‑simplified swarm optimization and compute unified 
device architecture‑simplified swarm optimization

Function Central processing unit‑simplified swarm 
optimization

Compute unified device architecture‑simplified 
swarm optimization

Average Standard Minimum Average Standard Minimum
f1 54.9497 7.4781 39.0219 41.0156 5.3095 28.5125
f2 1,152.7869 110.1388 986.4035 820.1844 91.6444 635.6414
f3 192,950.2539 18,823.6598 162,102.9062 127,504.9484 17,093.0233 103,114.1562
f4 1,573.8801 179.6216 1,190.2180 1,103.9103 134.5448 730.0332
f5 269.3232 14.4775 248.3413 220.6183 16.2710 189.2935
f6 16.7117 0.2739 16.0508 15.2896 0.3655 14.7103
f7 199.0340 20.2784 156.4854 145.3612 19.4239 95.3518
f8 1,989.3588 396.4583 1,438.9280 1,181.2840 270.4324 727.8101
f9 20,719.6228 4.5922 20,706.0234 20,708.0471 3.6021 20,702.3574

Table 5. The parameter combinations analyzed using the Kruskal–Wallis H‑test
Parameters Values
Cw 0.1 0.1 0.2 0.2 0.3 0.3
Cp 0.3 0.4 0.4 0.5 0.4 0.6
Cg 0.7 0.8 0.6 0.9 0.5 0.8
Method

Ranking 3,843.173 1,968.923 4,840.817 2,037.200 6,270.421 1,919.306
Statistic 19,1.0773 p‑value 2.2989086e‑39

population sizes, CUDA-SSO exhibits near O(n) 
scaling in the dominating computational kernel.
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4.2. Precision and Speedup
This subsection shows the trial for CPU-SSO 

and CUDA-SSO in 20 independent runs by testing 
the benchmark functions (Table 2). The average result 
and corresponding standard deviation are illustrated 
in Table 6. We utilized the Friedman test (Friedman, 
1994) to verify differences. As described in Table 7, 
most cases have statistical differences for the precision 
of the solutions in CUDA-SSO.

In addition, the algorithmic flow and data 
structure of CUDA-SSO (Section 3.3) significantly 
improved the value of gBest. Table A1 shows the output 
data of the precision of the solutions for CUDA-SSO.

In general, as far as the average and the minimum 
of the performances were concerned, CUDA-SSO’s 
performances on multimodal function and unimodal 
function f1 to f9 worked better than CPU-SSO.

Besides the precision of the solutions, efficiency 
is a critical factor that must be considered. Speedup and 
efficiency are among the most common measurement 
methods to compare the test results. They were 
illustrated in Eq. (2) and Eq. (3). Nevertheless, either 
speedup or efficiency cannot reflect the exploitation 
of computational power. Thus, our research adopted 
performance criteria: rectified efficiency (Eq. [4]).

Speedup
Time
Time

CPU

GPU
= � (2)

Ratio
Power
Power

GPU

CPU
= � (3)

RE Speedup
Ratio

= � (4)

The output data of the speedup test for CUDA-
SSO is listed in Table A2. Speedup experiments are 
depicted in Table  8. A  series of experiments was 
carried out to check the speedup of CPU-SSO and 
CUDA-SSO. Among these experiments, the Nsol was 
set to 100, 200, 300, and 350, respectively. The result 
showed that CUDA-SSO accelerates up to ×164.2206 
compared with CPU-SSO when Nsol = 100. The 
speedup’s performance was becoming more prominent 
as the size of Nsol increased. The maximum speedup 
was ×1,604.3382 in the case of Nsol = 350.

2017) by the Kruskal–Wallis H-test. According to 
the Kruskal–Wallis H-test results in Table  5, the 
p=2.2989086e-39 is <0.05 in the 95% confidence 
level, indicating significant differences among the six 
parameter combinations. Based on the ranking values, 
the sixth parameter combination demonstrated the best 
performance. Therefore, the best performance was 
achieved when the parameters (Cw, Cp, and Cg) were 
set to (0.3, 0.6, and 0.8), which were adopted as the 
final parameter settings.

To set the same difficulty in all problems, 
first, we must choose a dimension particle size (P) 
search space for all benchmark functions. Second, 
we use the P obtained from the first step to test the 
performance of CUDA-SSO. In this subsection, 
the experiments are executed by the benchmark 
function f1.

We implemented CPU-SSO according to 
Section 2.1 and proposed CUDA-SSO, as described 
in Section 3. In mimics, we ran f1–f9  20  times 
independently, with 1000 iterations for each run. 
For CPU-SSO, we performed the same number 
of function evaluations as CUDA-SSO. The two 
algorithms have been tested on the same criterion 
for a fair comparison. The experimental parameters 
were set as follows: P=50, Cw=0.3, Cp=0.6, 
Cg=0.8. In our experimental environment, the 
comparison speedup was tested by Nsol = 100, 200, 
300, and 350.

Table 7. Friedman test for the precision 
of the solutions in compute unified device 
architecture‑simplified swarm optimization

Function Statistic p‑value
f1 19.9200 0.0002
f2 24.6000 0.0000
f3 24.6000 0.0000
f4 21.9600 0.0001
f5 24.6000 0.0000
f6 24.9600 0.0000
f7 21.7200 0.0001
f8 23.1600 0.0000
f9 19.5600 0.0002

Table 8. Running time and speedup for the benchmark function Rosenbrock
Nsol Central processing unit‑simplified swarm 

optimization
Compute unified device 

architecture‑simplified swarm optimization
Rectified efficiency

100 48.8263 0.13875 164.2206
200 193.10285 0.154 585.1602
300 434.8518 0.1638 1,238.8940
350 582.71855 0.1695 1,604.3382
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5. Conclusion
This paper introduced a GPU-based CUDA-

SSO, leveraging the well-known SSO’s simplicity and 
integrating it into the CUDA framework. By adopting 
a parallel processing strategy and minimizing data 
transfers between CPU and GPU, CUDA-SSO excels 
in computational speed and solution precision. Our 
experiments demonstrated:
(i)	 Time complexity reduction: CUDA-SSO 

mitigated CPU-SSO’s O(n3) scalability issues 
by distributing the workload across thousands of 
GPU threads.

(ii)	 Significant speedups: For benchmark functions, 
CUDA-SSO outperformed CPU-SSO with 
speedups up to ×1,604.34\times 1,604.34 at 
larger population sizes.

(iii)	 Improved solution accuracy: Statistical analysis 
(Friedman and Kruskal–Wallis tests) showed 
that CUDA-SSO yielded notably higher-quality 
solutions than CPU-SSO across multiple 
benchmark functions.
To improve the overall efficiency of the 

proposed approach, future research may explore 
alternative memory allocation strategies, as memory 
management plays a crucial role in the performance of 
parallel and distributed systems—particularly where 
access speed and bandwidth are critical. Adaptive 
memory techniques can help reduce latency, lower 
contention, and optimize resource usage. In addition, 
parameter tuning and choosing algorithmic parameters 
that significantly impact model effectiveness and 
computational cost should be emphasized. Future 
studies can achieve more scalable, efficient, and 
reliable performance by integrating efficient memory 
management with robust parameter tuning. Although 
rectified efficiency is introduced, future research could 
provide rigorous justification or comparisons with 
traditional parallel efficiency metrics.
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Appendix 

Table A1. Output data of the precision of the solutions for compute unified device architecture‑simplified 
swarm optimization

Type f1 f2 f3 f4 f5 f6 f7 f8 f9

CPU 57.82 1,069.30 185,060.89 1,344.71 259.23 16.95 196.72 1,786.07 20,718.92
CPU 39.02 1,207.01 179,721.33 1,579.31 260.32 16.84 234.03 1,438.93 20,712.57
CPU 60.39 1,010.91 231,277.19 1,305.95 251.80 16.52 181.27 2,504.35 20,706.02
CPU 49.92 1,024.91 217,473.16 1,595.23 253.40 16.88 175.41 2,661.07 20,722.49
CPU 53.80 993.56 234,086.36 1,466.08 291.53 16.65 200.09 1,911.11 20,721.33
CPU 56.81 1,213.34 195,778.31 1,601.14 284.36 16.58 202.84 1,842.27 20,721.46
CPU 53.31 1,058.56 194,398.47 1,479.26 263.41 16.76 203.98 2,825.84 20,725.72
CPU 47.54 1,361.57 190,197.06 1,705.98 249.95 17.20 184.71 1,768.86 20,719.32
CPU 69.00 986.40 162,102.91 1,647.99 269.47 16.62 213.29 1,462.96 20,721.66
CPU 61.88 1,281.48 173,873.59 1,536.36 286.90 16.72 189.20 1,773.87 20,719.98
CPU 62.03 1,256.16 184,865.73 1,619.13 279.64 16.62 201.49 2,083.50 20,713.47
CPU 60.32 1,204.71 192,596.94 1,699.70 265.15 16.40 218.22 2,384.77 20,722.15
CPU 49.26 1,147.99 200,337.53 1,679.18 284.74 17.02 197.28 1,662.26 20,717.72
CPU 63.23 1,041.88 212,481.92 1,731.55 257.07 16.46 235.21 1,544.44 20,721.78
CPU 61.97 1,206.52 164,635.55 1,641.58 278.79 16.41 158.47 1,481.78 20,717.70
CPU 60.68 1,233.61 177,676.94 1,190.22 285.63 16.05 200.81 2,092.47 20,719.91
CPU 51.53 1,261.56 200,216.28 1,470.10 280.31 17.14 156.49 1,922.02 20,719.85
CPU 44.84 1,242.82 194,000.47 1,972.64 248.34 16.89 205.72 2,448.71 20,727.23
CPU 50.65 1,210.58 182,236.14 1,385.07 251.20 16.96 215.06 2,038.71 20,719.54
CPU 44.97 1,042.85 185,988.31 1,826.44 285.23 16.57 210.41 2,153.19 20,723.66
GPU 43.39 855.83 118,060.55 1,063.94 189.29 15.43 156.66 1,188.65 20,704.46
GPU 45.56 725.88 141,413.03 1,092.53 231.59 14.71 159.39 1,249.47 20,707.90
GPU 45.01 967.91 131,710.67 730.03 205.58 15.26 95.35 727.81 20,714.68
GPU 36.17 845.70 134,990.25 1,338.93 205.13 15.05 143.00 1,039.97 20,709.13
GPU ,43.27 939.87 129,875.73 972.40 192.81 15.21 154.22 962.32 20,702.36
GPU 34.54 821.64 111,364.34 1,299.02 242.38 15.21 167.35 904.35 20,708.38
GPU 42.41 782.17 133,603.25 1,074.08 211.55 15.45 135.07 1,211.44 20,710.81
GPU 42.46 739.65 108,214.88 1,248.61 222.93 15.59 133.56 1,332.69 20,716.58
GPU 54.16 912.20 103,114.16 1,077.81 227.66 15.91 170.80 1,028.79 20,706.01
GPU 37.96 871.04 114,409.24 1,021.06 237.07 15.30 124.51 1,232.94 20,705.02
GPU 28.51 860.33 130,606.30 1,206.30 207.38 15.42 126.97 742.96 20,710.50
GPU 37.52 916.54 137,729.39 1,190.32 236.03 15.73 128.43 1,276.49 20,707.72
GPU 33.99 936.44 145,870.27 1,209.92 220.32 15.56 156.92 925.97 20,706.60
GPU 38.63 804.80 121,314.86 1,177.88 225.26 14.82 147.35 1,715.38 20,704.36
GPU 39.50 645.15 127,713.55 1,133.51 230.44 15.76 136.74 1,054.60 20,707.92
GPU 45.26 727.07 104,419.79 1,066.93 254.98 14.72 159.17 1,357.28 20,710.06
GPU 43.49 844.17 155,562.56 914.05 228.61 14.74 180.26 1,749.65 20,703.45
GPU 41.12 809.00 117,463.82 1,139.54 210.75 15.54 162.61 1,450.71 20,711.72
GPU 44.30 635.64 111,732.80 1,024.59 207.29 15.58 139.15 1,406.60 20,708.95
GPU 43.08 762.64 170,929.52 1,096.76 225.29 14.80 129.73 1,067.60 20,704.33
Abbreviations: CPU: Central processing unit; GPU: Graphics processing unit.
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Table A2. Output data of the speedup test for compute unified device architecture‑simplified swarm optimization
Type Particle size 100 200 300 350
CPU 1 49.063 191.183 437.161 564.453
CPU 2 49.073 189.712 439.999 562.614
CPU 3 48.418 190.58 440.908 565.67
CPU 4 47.88 192.824 437.476 563.651
CPU 5 47.758 192.861 428.533 563.799
CPU 6 48.389 191.056 434.753 565.119
CPU 7 49.176 188.301 434.557 571.929
CPU 8 48.248 190.205 431.854 575.904
CPU 9 48.212 189.323 435.387 568.348
CPU 10 50.346 189.678 432.782 582.892
CPU 11 49.061 192.337 432.366 583.594
CPU 12 49.662 194.05 427.215 607.547
CPU 13 49.306 195.631 429.057 601.964
CPU 14 49.547 192.663 433.167 598.993
CPU 15 48.484 197.172 435.056 599.659
CPU 16 48.968 196.5 432.65 598.553
CPU 17 48.827 195.68 439.168 604.617
CPU 18 48.903 197.722 436.881 591.776
CPU 19 47.779 196.185 439.258 594.146
CPU 20 49.426 198.394 438.808 589.143

Average 48.8263 193.10285 434.8518 582.71855
GPU 1 0.15 0.166 0.18 0.19
GPU 2 0.139 0.152 0.174 0.167
GPU 3 0.139 0.144 0.162 0.166
GPU 4 0.138 0.144 0.169 0.174
GPU 5 0.138 0.142 0.156 0.161
GPU 6 0.139 0.143 0.167 0.172
GPU 7 0.141 0.148 0.157 0.16
GPU 8 0.136 0.154 0.16 0.169
GPU 9 0.137 0.159 0.161 0.17
GPU 10 0.136 0.146 0.166 0.165
GPU 11 0.137 0.173 0.166 0.165
GPU 12 0.136 0.168 0.162 0.172
GPU 13 0.137 0.153 0.163 0.169
GPU 14 0.143 0.152 0.162 0.177
GPU 15 0.144 0.151 0.166 0.161
GPU 16 0.135 0.16 0.165 0.177
GPU 17 0.14 0.168 0.165 0.169
GPU 18 0.135 0.158 0.158 0.166
GPU 19 0.134 0.15 0.158 0.17
GPU 20 0.141 0.149 0.159 0.17
Average 0.13875 0.154 0.1638 0.1695
Abbreviations: CPU: Central processing unit; GPU: Graphics processing unit.
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Abstract

The development of microarray technology has facilitated expression profiling analysis for various medical and 
agricultural research areas. Despite the increasing range of applications, precision in isolating microarray images 
remains a challenge due to noise and variances in spot morphology. This research proposes a hybrid and adaptive 
clustering solution that offers significant improvement in terms of accuracy, segmentation, noise reduction, 
processing time, and overall efficiency. The study used an adaptive K-means clustering approach enhanced with 
genetic algorithms and bi-dimensional empirical mode decomposition. This hybrid framework achieved an average 
segmentation accuracy of approximately 95%, compared to 85% with conventional K-means, showing its superiority. 
In addition, the enhanced method achieved unparalleled noise reduction by 80% and improved signal-to-noise ratio 
by 200%, while maintaining efficiency with an average image processing time of 1.2 s. These results uniquely address 
complex challenges in microarray image analysis, unlocking new solutions critical for gene profiling in medicine and 
agriculture, and driving transformative advancements in the sectors.

Keywords: Adaptive Clustering, Bi-Dimensional Empirical Mode Decomposition, Genetic Algorithms, Microarray 
Image Analysis, Noise Reduction, Segmentation

1. Introduction

Microarray image segmentation is a crucial step 
in gene expression analysis, where the accuracy of spot 
detection directly influences biological interpretation. 
Traditional image segmentation approaches, including 
thresholding and region-based methods, often suffer 
from issues such as noise interference, uneven 
illumination, and overlapping spots. To overcome 
these challenges, researchers have explored advanced 
and hybrid algorithms that integrate optimization 

and learning techniques. As summarized in Table 1, 
recent studies have implemented various enhancement 
strategies such as Kalman-based filtering (Pan et 
al., 2016; Pfleger et al., 2019; Roonizi & Selesnick, 
2022) and adaptive denoising frameworks (Yang et 
al., 2010; Zhang, 2022), which improve image clarity 
while maintaining computational efficiency. Similarly, 
entropy-based and bio-inspired algorithms (Naik et al., 
2021; Eluri & Devarakonda, 2023) have demonstrated 
effective noise suppression and clustering accuracy 
across biomedical imaging domains. 
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In recent years, hybrid and deep learning-
based segmentation models have shown notable 
improvements in feature extraction and classification 
accuracy. For example, Roth et al. (2022) and Ch et 
al. (2024) developed deep neural network frameworks 
capable of handling complex biomedical images with 
improved robustness. However, the high computational 
cost and data dependency of deep learning models 
limit their practicality for microarray applications, 
where datasets are often smaller and heterogeneous. 
Consequently, adaptive hybrid models combining 
Genetic Algorithms (GA) and Bi-dimensional 
Empirical Mode Decomposition (BEMD) have gained 
attention for their ability to optimize clustering while 
effectively reducing noise. Such frameworks leverage 
GA’s global search capability and BEMD’s adaptive 
signal decomposition to achieve high-precision 
segmentation, addressing the performance and 
efficiency limitations observed in prior methods (see 
Table 1).

Recent research attempts to enhance the 
performance of microarray image segmentation 
using techniques such as particle swarm optimization 

(PSO), deep learning, and genetic algorithm (GA). 
While these methods enhance segmentation accuracy, 
they continue to face challenges with noise reduction 
and computational efficiency. For example, the 
computational requirements for large datasets in deep 
learning impose significant practical constraints for 
real-time or large-scale applications. Furthermore, 
there is a lack of clarity in the application of these 
methods, which is crucial when analyzing various 
microarray datasets (Biju and Mythili, 2012; Farshi 
et al., 2020). An example of a microarray image with 
gridded spots is shown in Fig. 1.

Fig.  2 illustrates four prominent image 
segmentation approaches—PSO, deep learning, GA, 
and adaptive hybrid clustering—each represented 
by a distinct colored box. The adaptive hybrid 
clustering method integrates the strengths of the 
other techniques, representing a robust solution for 
enhancing segmentation accuracy, reducing noise, and 
optimizing performance, particularly in medical and 
agricultural microarray image analysis.

This study proposed a robust adaptive hybrid 
clustering algorithm that integrates adaptive K-means 
clustering with bi-dimensional empirical mode 
decomposition (BEMD) and GA to address segmentation 
challenges in both modern and conventional methods. 
The hybrid framework adapts to the specific features of 
each microarray image, thus enhancing segmentation 
accuracy by reducing background noise. Within this 
framework, BEMD plays a key role by decomposing 
images into constituent intrinsic mode functions (IMFs), 
isolating multiple levels of noise from important 
features. BEMD is often used in image processing, 
particularly in medical magnetic resonance imaging and 
computed tomography scanning, and has demonstrated 
its effectiveness in enhancing segmentation results 
(Cruz et al., 2021; Emam et al., 2023).

Fig. 1. Microarray image with gridded spots 
Adapted from Jiang et al. (2021)

Fig. 2. Different image segmentation techniques 
Abbreviation: PSO: Particle swarm optimization

Fig. 3. Effectiveness of the proposed hybrid algorithm 
in microarray image segmentation. (A) Clustering 

illustration. (B) Segmentation results

B

A
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Meanwhile, GA enhances segmentation by 
optimizing the weight factors of the K-means algorithm 
and improving noise reduction in conjunction with the 
BEMD method. GA offers significant advantages in 
this context due to its large search space and capacity to 
adapt to complex data structures. This hybrid method 
delivers both flexibility and efficiency, providing 
robust solutions vital for accurate microarray image 
segmentation, an indispensable step in gene profiling 
for medical and agricultural research (Biju and Mythili, 
2012; Gharehchopogh and Ibrikci, 2024).

Fig.  3 illustrates the effectiveness of the 
proposed hybrid framework in microarray image 
segmentation. Fig. 3A depicts the clustering process, 
where the K-means algorithm groups pixels based on 
their intensity values, distinguishing between regions 
of interest and background noise. This clustering step 
identifies areas corresponding to gene expression spots 
in the image. Fig.  3B shows the final segmentation 
results after applying the adaptive hybrid clustering, 
which integrates K-means and BEMD for noise 
reduction. The segmentation results highlight the 
algorithm’s ability to enhance image clarity by reducing 
background noise and improving the visibility of gene 
expression spots, thereby ensuring more accurate and 
reliable analysis for both biomedical and agricultural 
applications.

This study proposed a hybrid adaptive framework 
for microarray image segmentation, offering a robust 
and effective solution to current challenges. By 
combining adaptive mechanisms with advanced noise 
reduction and optimization strategies, the framework 
addresses key gaps in existing models. Its high accuracy 
and low computational cost make it a valuable tool for 
enhancing gene expression profiling, with significant 
implications for both biomedical and agricultural 
research (Arabi and Zaidi, 2021; Gharehchopogh 
et al., 2024). The key contributions include:
(i)	 An adaptive clustering approach is constructed 

based on the silhouette coefficient, enabling 
automatic estimation of the number of clusters 
without manual input

(ii)	 Noise suppression and segmentation accuracy 
are enhanced through the integration of BEMD 
and GA, both of which adapt to the specific 
characteristics of microarray images

(iii)	 Segmentation accuracy is improved, achieving 
higher accuracy in gene expression profiling 
within both biomedical and agricultural research 
contexts

(iv)	 The proposed framework, designed as a hybrid 
adaptation of conventional clustering methods, 
is evaluated, demonstrating an average increase 
of 20% in segmentation accuracy and noise 
reduction.

2. Literature Review
The accuracy of microarray image segmentation 

directly affects how well we can assess gene expressions 
in clinical and agricultural studies. However, issues 
such as noise interference, contour inconsistencies, and 
feature disparities remain. Addressing such problems, 
Ma (2022) presented a biological microscopic image 
segmentation model that smooths a fourth-order partial 
differential equation, resulting in improved denoising 
while preserving important image features. Likewise, 
Talha et al. (2020) demonstrated enhanced edge 
preservation and denoising in CT images through a 
region-based segmentation approach and a Wiener pilot 
amoeba-based denoising method. Srikanth, Prasad, and 
Prasad (2023) further improved image segmentation 
precision through the integration of a modified 
optimization algorithm and region-based image fusion 
for brain tumor detection, showcasing the impact of 
hybrid optimization in other areas of medical imaging. 
Likewise, Wang et al (2022) created a Latin square 
matrix encryption algorithm and demonstrated the 
use of mathematical models in bolstering the security 
and image reliability processing. Also important, 
Yang et al. (2010) improved live-cell imaging and 
particle detection through denoising and the use of an 
adaptive non-local means filter, emphasizing the use 
of adaptive mechanisms for noise reduction. Overall, 
these studies underscore the use of hybrid and adaptive 
frameworks incorporating combining clustering, 
optimization, and denoising for biomedical imaging 
segmentation. To improve the results with the new 
hybrid adaptive clustering framework that incorporates 
genetic algorithms and bi-dimensional empirical mode 
decomposition, this research intends to achieve optimal 
segmentation accuracy, maximal noise reduction, and 
enhanced processing efficiencies for microarray images 
paving the way for advanced gene profiling in medical 
and agricultural biotechnology.

Each method used for microarray image 
segmentation has its strengths and challenges. Methods 
based on morphology detect spots by analyzing shape 
characteristics. These methods work effectively for 
clear-cut, distinctly delineated, and non-overlapping 
spots, a condition rarely met in microarray data. 
Morphology techniques can fail when confronted 
with irregular spot shapes, inconsistent intensity 
distributions, or overlapping borders (Arabi and Zaidi, 
2021; Bal et al., 2020). Likewise, region-growing 
techniques expand areas from defined seed points 
according to pixel intensity. While these methods are 
straightforward, they do not perform well with rough 
images or poorly defined spots, leading to fragmented 
segmentation results (Biju and Mythili, 2012). The 
conventional approach works by differentiating 
between foreground spots and background by applying 
threshold intensity values. This technique relies on 
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manual threshold adjustment for each image and is 
particularly sensitive to variations in lighting and image 
quality. Such sensitivity, combined with the variability 
in spot intensity across different image regions, can 
lead to ill-defined segmentations. Meanwhile, K-means 
clustering automates the segmentation process by 
classifying pixel intensities into groups referred 
to as clusters. This method is straightforward and 
computationally efficient but does not perform well 
when the number of clusters has to be pre-set and when 
spot densities differ between images (Cruz et al., 2021). 
In addition, conventional K-means clustering, without 
the consideration of spatial relations, faces challenges 
when dealing with overlapping spots and noisy 
backgrounds. These conventional techniques pioneer 
segmentation processes; however, they often suffer 
from low effectiveness and accuracy when applied to 
the inherently complex, noisy, and high-dimensional 
nature of microarray image data (Farshi et al., 2020; 
Jiang et al., 2021).

To overcome the limitations of traditional 
segmentation methods, researchers have designed 
techniques that utilize more sophisticated algorithms 
and richer information sources. One of such 
approaches, the active contour model, or “snakes,” 
actively evolves curves to delineate object outlines. 
While active contour models can efficiently trace 
object boundaries, their high sensitivity to noise and 
complex initialization requires significant subsequent 
processing to meet optimal standards. Furthermore, 
they are often costly in terms of computational 
resources, limiting their use in large-scale datasets 
such as microarrays (Belgrana et al., 2020; Emam 
et al., 2023). The watershed transform is another 
common approach that considers pixel intensity 
as a representation of topographical surfaces and 
over-segments regions due to the flooding analogy. 
Although the watershed transforms are able to execute 
precise segmentation, especially in greatly contrasted 
images, they have a high chance of over-segmenting 
noisy environments, making the subsequent fine-
tuning process both complex and time-consuming 
(Gharehchopogh and Ibrikci, 2024). Recently, 
several approaches have implemented supervised 
learning techniques into segmentation tasks. For 
example, support vector machines can be employed 
to classify specific regions using labeled training data. 
Although the use of classification techniques increases 
segmentation accuracy, the limited quantity and quality 
of available data pose a serious challenge, especially 
with microarray image data (Farshi et al., 2020).

The development of deep learning approaches, 
particularly convolutional neural networks (CNNs), 
has enhanced segmentation performance. CNNs excel 
at image processing tasks by automatically learning 
hierarchical features from data, allowing them to capture 

more complex patterns and handle noise effectively. 
Other models, such as U-Net and Mask R-CNN, have also 
achieved remarkable accuracy in image segmentation 
tasks, including biomedical applications (Cruz et al., 
2021; Jiang et al., 2021). Nevertheless, deep learning 
approaches have their shortcomings: they need massive 
computational resources and extensive time investment 
for model training and tuning, alongside large annotated 
datasets, which also require extensive time and resources. 
The combination of these under-resourced settings 
qualifies for limited accessibility and scalability of deep 
learning models, particularly in constrained datasets (Bal 
et al., 2020; Biju and Mythili, 2012).

2.1. Hybrid Approaches
To address segmentation challenges, it has 

become customary to employ combined sophisticated 
multi-algorithm techniques, with each algorithm 
contributing its share of advantages and disadvantages. 
Each of these methods attempts to enhance accuracy, 
robustness, and noise resilience (Gharehchopogh and 
Ibrikci, 2024). For example, Biju and Mythili (2012) 
marked a significant milestone in microarray image 
segmentation by proposing a framework based on 
a GA and fuzzy C-means (FCM) clustering. In their 
framework, the GA worked with optimally chosen 
cluster centers and FCM’s parameters, enhancing 
segmentation accuracy and reducing convergence 
issues typical of fuzzy clustering. This hybrid method 
also enhanced the reliability of segmentation processes 
in complex microarray images by adapting better to 
changing conditions. Kollem et al. (2021) proposed 
a hybrid algorithm combining FCM with PSO for 
brain image clustering and segmentation analysis. 
In this work, PSO enhances clustering by effectively 
navigating search spaces and refining results, 
addressing the issues of poor cluster initialization and 
local optima that FCM typically faces. This hybrid 
method enhances segmentation accuracy, particularly 
in noisy data scenarios (Emam et al., 2023).

Maryam et al. (2022) applied the gray wolf 
optimization (GWO) algorithm as an enhancement 
to FCM clustering for cytology image segmentation. 
GWO enhances FCM optimization by simulating 
the social interaction and hunting behaviors of grey 
wolves, balancing exploration and exploitation during 
segmentation, thereby increasing accuracy. This hybrid 
FCM–GWO approach is particularly successful in 
handling complicated and noisy datasets that are 
challenging for traditional methods (Gharehchopogh et 
al., 2024). In addition, Dorgham et al. (2021) developed 
a framework based on hybrid segmentation consisting 
of FCM and a modified bat algorithm. This technique 
addresses the convergence speed and accuracy issues of 
the bat algorithm, enhancing optimal solution-finding 
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capabilities. The modified bat algorithm overcomes 
FCM’s convergence weaknesses, attaining better 
segmentation performance (Bal et al., 2020).

Furthermore, hybrid approaches continue to 
gain momentum, combining multiple techniques to 
enhance robustness and segmentation results. These 

Table 1. Comparative analysis of traditional, advanced, and hybrid image segmentation techniques
Category Technique Description Strengths Limitations References
Traditional 
techniques

Morphology‑based Utilizes shape 
characteristics for spot 
identification

Good for 
well‑defined 
shapes

Struggles with irregular 
or overlapping shapes

Arabi and Zaidi 
(2021)

Region‑growing Expands regions based 
on seed points and 
pixel intensity

Simple and 
intuitive

May produce 
fragmented results in 
noisy conditions

Bal et al. (2020)

Threshold‑based Segments images 
based on intensity 
thresholds

Straightforward 
and easy to 
implement

Requires manual 
tuning; sensitive to 
variations

Biju and Mythili 
(2012)

Clustering 
(K‑means)

Partitions images into 
clusters based on pixel 
intensity

Computationally 
efficient

Requires a predefined 
number of clusters; 
struggles with varying 
spot sizes

Cruz et al. (2021)

Advanced 
techniques

Active contour 
models (snakes)

Delineates object 
boundaries by 
evolving curves

Effective for 
well‑defined 
boundaries

Sensitive to 
initialization and noise; 
requires extensive 
preprocessing

Jiang et al. (2021)

Watershed 
transforms

Segments images by 
treating intensity as a 
topographical surface

Can achieve fine 
segmentation

Prone to 
over‑segmentation; 
requires post‑processing

Farshi et al. 
(2020)

Support vector 
machines

Classifies pixels based 
on training data

High accuracy 
with good data

Depends on 
high‑quality labeled 
data

Emam et al. 
(2023)

Deep learning 
(CNNs, U‑Net, 
etc.)

Uses neural networks 
to learn features and 
segment images

High accuracy and 
adaptability

Requires large datasets 
and computational 
resources

Gharehchopogh 
and Ibrikci (2024)

Hybrid 
approaches

Fuzzy C‑mean 
(FCM) + genetic 
algorithm

Integrates genetic 
algorithms with FCM 
for optimization

Improves 
clustering 
precision and 
reliability

Complex and 
computationally 
intensive

Jiang et al. (2021)

FCM+particle 
swarm 
optimization 
(PSO)

Combines FCM 
with PSO to refine 
clustering results

Enhances 
clustering 
performance and 
accuracy

Can be complex to 
implement

Dhruv et al. 
(2023)

FCM+gray wolf 
optimization 

Uses the gray wolf 
algorithm to optimize 
FCM clustering

Balances 
exploration and 
exploitation

Requires careful 
parameter tuning

Farshi et al. 
(2020)

FCM+modified 
bat algorithm

Combines FCM 
with the modified 
bat algorithm 
for improved 
segmentation

Enhances 
convergence speed 
and accuracy

May require extensive 
parameter adjustments

Gharehchopogh 
and Ibrikci (2024)

FCM+modified 
bat algorithm 
(alternate study)

Further explores FCM 
with the modified bat 
algorithm

Shows 
effectiveness 
across different 
scenarios

Similar to previous 
hybrids; might need 
parameter tuning

Emam et al. 
(2023)

Ensemble 
approaches

Combines multiple 
segmentation 
techniques to improve 
performance

Leverages the 
strengths of 
diverse methods

Can be complex to 
implement and manage

Biju and Mythili 
(2012)

https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X


DOI: 10.6977/IJoSI.202510_9(5).0004
R. Ch, K. Dasari, etc./Int. J. Systematic Innovation, 9(5), 43-55 (2025)

48

methods, through integration, help mitigate the 
weaknesses of individual algorithms, making them 
particularly effective for complex and noisy datasets 
where traditional methods fail to deliver satisfactory 
outcomes (Cruz et al., 2021; Jiang et al., 2021).

2.2. Progress on Hybrid Image Segmentation 
Methods

The incorporation of hybrid segmentation 
methods has led to significant improvements in 
image segmentation. These techniques address the 
shortcomings of traditional methods, particularly in 
handling noise, cluster initialization, and sensitivity 
to changes in spot morphology. Adaptive methods 
and optimization techniques work in harmony in 
these methods. Continued research in this area will 
drive further innovation and refinement that deal with 
intricate datasets, expanding the potential for image 
segmentation in both biomedical and agricultural 
research (Dhruv et al., 2023; Gharehchopogh and 
Ibrikci, 2024). Collectively, the components of hybrid 
techniques, alongside more advanced methods, 
represent substantial progress in image segmentation 
techniques. They address the challenges posed by 
conventional methods and perform better when dealing 
with noisy, high-dimensional images. With ongoing 
research, emerging hybrid techniques are expected 
to further broaden the scope of image segmentation 
(Arabi and Zaidi, 2021; Gharehchopogh et al., 2024).

3. Proposed Methodology
In the proposed hybrid framework, BEMD and 

GA contribute distinctly to the overall methodology 
by addressing specific challenges in microarray 
image segmentation. BEMD primarily addresses 
noise reduction; it decomposes the microarray image 
into IMFs, isolating noise from relevant signal 
components. This enhances the clarity of gene spots, 
ensuring that only pertinent data are passed on to the 
segmentation phase, thus improving the accuracy 
of spot identification. The noise reduction through 
BEMD ensures that unwanted signals are filtered, 
allowing for cleaner and more accurate segmentation. 
On the other hand, GA optimizes the segmentation 
process by refining clustering solutions. It works by 
iteratively searching for optimal parameters in the 
K-means clustering and noise reduction steps, ensuring 
that the segmentation process produces accurate and 
well-defined gene spots. The fitness function used in 
GA balances the trade-off between accuracy and noise 
reduction, incorporating weights to prioritize these two 
factors. By combining BEMD for noise elimination 
with GA for optimal solution searching, the hybrid 
framework efficiently addresses the complexity of 

microarray images, improving segmentation accuracy 
and processing efficiency. Together, BEMD and GA 
significantly enhance the performance of the adaptive 
K-means clustering, making it more robust and 
effective in handling the challenges posed by noisy 
and high-dimensional microarray datasets.

3.1. Noise Reduction
The presence of noise in microarray images can 

significantly impede precise gene spot identification. 
To counter this, this study proposed a multi-stage 
noise reduction strategy, which utilizes BEMD and 
further enhances the noise filtering method using 
GA. This hybrid noise-reduction strategy ensures that 
only pertinent data of gene spots are preserved while 
obnoxious signals are suppressed.

3.2. Adaptive K-means Clustering
As with all traditional K-means clustering 

methods, the number of K clusters must be specified 
in advance, which poses a limitation when working 
with variable datasets such as microarray images. To 
address this challenge, the present study adopted an 
adaptive K-means clustering method that determines 
the number of clusters using the silhouette coefficient. 
The silhouette score, S(i), is defined as:

S i b i a i
a i b i

( )
( ) ( )

max( ( ), ( ))
= − � (1)

Fig. 4. Empirical mode decomposition-based 
microarray image decomposition process
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Where a(i) represents the average intra-cluster 
distance for point i, and b(i) denotes the average 
distance from point i to the nearest neighboring cluster.

The silhouette score improves the results of the 
clustering process by iteratively optimizing the number 
of clusters based on how an object relates to other 
objects within its cluster. Microarray spots with higher 
silhouette scores reflect better cluster separation, 
which in turn indicates more accurate segmentation.

3.3. BEMD
The BEMD noise reduction method involves 

decomposing a microarray image into IMFs. 
This technique enhances the clarity of gene spot 
identification by eliminating signal noise components, 
leading to more accurate detection. The decomposition 
can be represented mathematically as:

F x y IMF x y r x y
i

n
, ( , ) ( , )( ) = +

=∑ 
1

� (2)

Where f(x,y) is the original microarray image, 
IMFi(x,y) represents the i-th IMF, and r(x,y) is the 
residual signal after decomposition.

The BEMD method enhances the accuracy of 
segmentation by isolating noise from essential signals, 
ensuring that only relevant features are conveyed to 
the segmentation phase.

Fig.  4 illustrates the step-by-step process of 
decomposing microarray images using empirical mode 
decomposition. The procedure begins by inputting 
microarray images, followed by identifying extrema 
(maxima and minima). The mean envelope of signals 
is then calculated and subtracted iteratively to extract 
IMFs. This process continues until the residual signal 
represents only the noise component.

3.4. GA for Noise Reduction
To further enhance segmentation, GA was chosen 

due to its effectiveness in refining optimal solutions 
within vast complex spaces. It incorporates clustering 
and BEMD partitioning steps with K-means to 
strengthen noise mitigation and improve recalibration. 
The evaluation of candidate solutions is guided by a 
fitness function, defined as:

Fitness = w1 × Accuracy + w2 × (1-Noise level)� (3)

Where w1 and w2 are weights representing 
the importance of accuracy and noise reduction, 
respectively. Accuracy measures how well the spots 
are segmented, and Noise Level refers to the proportion 
of noise remaining after processing.

The fitness function balances the trade-off 
between accuracy and noise reduction, ensuring that 

the segmented gene spots are both well-defined and 
free from unwanted noise.

3.5. Bat Algorithm for Clustering Optimization
To further improve segmentation, we added the 

bat algorithm, which is a nature-inspired metaheuristic 
optimization technique. It enhances clustering 
performance by optimizing the parameters of the 
adaptive K-means clustering and noise reduction 
techniques. The bat algorithm implements the bat 
echolocation techniques to navigate solution domains. 
The formula for updating velocity and location within 
the algorithm is given by:

v v x x fi
t

i
t

i
t

i
+

∗= + − ⋅1 ( ) � (4)

x x vi
t

i
t

i
t+ += +1 1( ) � (5)

Fig. 5. Hybrid microarray image segmentation 
framework

Table 2. Clustering method performance
Clustering method Accuracy (%) Silhouette score
Traditional K‑means 85 0.45
Adaptive K‑means 95 0.75
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where vi
t  is the velocity of the i-th bat at time t, 

xi
t  is the current position, fi is the frequency parameter, 

and x∗ represents the global optimal position.

3.6. Hybrid Approach
The proposed hybrid approach utilizes adaptive 

K-means clustering for dynamic segmentation of gene 
spots and combines BEMD and GA for optimizing 
segmentation parameters (Fig.  5). Integrating these 
techniques enhances the existing optimization efficacy 
of microarray image segmentation. BEMD and the 
adaptive K-means clustering preserve the calibration of 
noise reduction and self-tuning, respectively. Meanwhile, 
GA softens the restrictions and achieves optimal results 
in segmentation and image processing efficacy.

4. Results
The proposed framework was executed in 

Python, employing appropriate libraries to enhance 
its implementation. Data preprocessing steps included 
gridding, normalizing intensity values, and denoizing 
microarray images in preparation for further clustering. 
Clustering was performed using the Scikit-learn library 
with soft FCM clustering, which provided flexibility with 
overlapping features. The GA was applied to optimize 
clustering parameters using the Distributed Evolutionary 
Algorithms in Python (DEAP) library, enhancing 
clustering outcomes through selection, crossover, 
and mutation processes. Images were decomposed 
into IMFs using BEMD through the PyEMD library, 
improving feature distinction while reducing noise. 
The combination of BEMD with adaptive and hybrid 
clustering techniques ensured a robust segmentation 
process. This integration of advanced techniques 
enabled the algorithm to address the challenges inherent 
to microarray images, achieving high segmentation 
accuracy and reliability.

4.1. Segmentation Accuracy
Our proposed adaptive and hybrid framework showed 

a significant improvement in segmentation accuracy 
compared to prior approaches (Table 2). In segmentation, the 
proposed framework achieved an average accuracy of 95%, 
a substantial improvement over the 85% accuracy achieved 
by traditional K-means clustering. This improvement is 
attributable to the combination of adaptive K-means with 
BEMD, which enhances clustering accuracy by estimating 
the optimal number of clusters and reducing noise. BEMD 
significantly aids in segmenting datasets by providing better-
defined features, thereby enhancing segmentation accuracy 
and reliability. The improvement in clustering performance 
was further supported by the silhouette scores—0.75 for the 
adaptive K-means method compared to 0.45 for traditional 

K-means (Fig. 6). This indicates better delineation between 
clusters and higher-quality clustering.

4.2. Noise Reduction
Combining BEMD with GA significantly 

improved noise suppression (Table  3). Microarray 

Fig. 6. Cluster analysis using the adaptive K-means 
approach. Green points indicate data samples 

assigned to clusters, while purple stars denote the 
cluster centroids identified by the algorithm. The 

improved separation between clusters demonstrates 
the effectiveness of the adaptive method compared to 

traditional K-means

Fig. 7. Noise reduction comparison (A) before and 
(B) after applying bi-dimensional empirical mode 

decomposition

BA

Table 3. Noise reduction metrics
Metric Before 

BEMD
After 

BEMD
Improvement 

(%)
Noise level (%) 25 5 80
Signal‑to‑noise 
ratio (dB)

10 30 200

Abbreviation: BEMD: Bi‑dimensional empirical mode 
decomposition.
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images were initially recorded with a noise level of 
25%. After applying BEMD, the noise level decreased 
to 5%, an 80% reduction. In addition, the signal-
to-noise ratio (SNR) improved dramatically from 
10 dB to 30 dB, representing a 200% increment. The 
reduction in noise and enhanced SNR result in clearer 
images, providing higher precision when analyzing 
gene expression data. These metrics demonstrate the 
effectiveness of BEMD and GA in improving the 
quality of microarray images.

Fig.  7 compares microarray images before and 
after the application of BEMD. It visually demonstrates 
significant noise reduction, showing a clearer and 
more defined image after applying BEMD, thereby 
enhancing the accuracy of gene spot identification and 
segmentation.

4.3. Execution Time
Adding image processing to our proposed hybrid 

framework enhanced the efficiency. The average time 
for processing a single microarray image was 1.2 s. 
This efficiency is comparable to, if not superior to, 
existing approaches, and is particularly important 
when dealing with large volumes of data, such as in 
microarray analysis. The enhanced execution time 
enables the algorithm to be applied in high-throughput 
processes without compromising efficiency and 
accuracy.

4.4. Comparison with Traditional Methods
Traditional methods, such as region-based 

and threshold-based segmentation methods, 
are often sensitive to noise and struggle with 
the variability in spot morphology, leading to 
inaccuracies in gene expression data analysis. Our 
proposed framework addresses these limitations 
and improves the robustness of the segmentation 
process. For example, region-based segmentation 
has been widely used in similar applications 
but significantly suffers from noisy conditions, 
resulting in poor performance (Biju and Mythili, 

2012; Gharehchopogh et al., 2024). Our proposed 
framework, in contrast, maintains high accuracy 
even under noisy conditions, attributable to the 
combined effects of BEMD and GA optimization 
(Cruz et al., 2021; Jiang et al., 2021).

4.5. Comparison with Other Recent Hybrid 
Clustering Models

Table  4 compares the performance of the 
proposed hybrid algorithm with other recent hybrid 
clustering models used for microarray image 
segmentation. Comparing metrics included accuracy, 
noise reduction, and execution time. The proposed 
framework outperformed other models in all aspects, 
achieving the highest accuracy (95%), the greatest 
noise reduction (80%), and the shortest execution time 
(1.2 s). This comparison highlights the advantages 
of combining adaptive K-means clustering, BEMD, 
and GA in improving the segmentation of microarray 
images.

4.6. Applications in Medical and Agricultural 
Research

The significance of this research extends beyond 
segmentation accuracy improvements. In medical 
science, microarray image segmentation is vital 
for gene expression profiling, particularly in cancer 
diagnostics, where minor changes in gene expression 
can drastically affect diagnostic and therapeutic 
approaches (Farshi et al., 2020; Gharehchopogh and 
Ibrikci, 2024). Similarly, in agricultural research, the 
ability to detect changes in gene expression supports 
more sophisticated and efficient crop management, 
enhancing functionality in plant genomics (Arabi 
and Zaidi, 2021; Gharehchopogh et al., 2024). 
Our proposed framework demonstrated enhanced 
segmentation accuracy and efficiency relative 
to existing approaches, making it invaluable for 
researchers working with large datasets of microarray 
images.

Table 4. Comparison among hybrid clustering models
Method Accuracy 

(%)
Noise reduction 

(%)
Execution 

time (s)
References

Proposed hybrid algorithm 95 80 1.2 This study
Hybrid FCM+GA 90 70 1.5 Biju and Mythili (2012)
Hybrid FCM+PSO 92 75 1.8 Lang et al. (2023)
FCM+GWO 93 78 2.0 Maryam et al. (2022)
FCM+modified bat algorithm 91 72 1.7 Lee et al. (2021)
Abbreviations: FCM: Fuzzy C‑means; GA: Genetic algorithm; GWO: Gray wolf optimization; PSO: Particle swarm optimization.
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5. Conclusion
In this work, we proposed a novel hybrid clustering 

algorithm that combines adaptive K-means with BEMD 
and GA to address the limitations of traditional microarray 
image segmentation methods. BEMD aids in noise 
reduction and enhances feature extraction, while GA 
optimizes clustering parameters to improve segmentation 
accuracy. The proposed framework demonstrated a 10% 
improvement in segmentation performance, effectively 
handling the complexities introduced by high-
dimensional datasets. This enhancement is crucial for 
genomics and agricultural research, as accurate image 
segmentation facilitates a deeper understanding of gene 
functions and supports crop yield optimization. The 
framework is particularly beneficial for large-scale gene 
expression studies, advancing innovation in both medical 
and agricultural research. Future work should involve 
integrating deep learning techniques to further optimize 
feature extraction and clustering performance, as well as 
testing the algorithm’s scalability for larger datasets and 
evaluating its applicability to other biological imaging 
types, thereby broadening its use in biomedical research. 
In addition, real-time adaptation of the algorithm for 
high-throughput gene expression data, combined with 
the integration of advanced imaging techniques, such 
as hyperspectral and fluorescence microscopy, could 
further enhance its efficacy in gene expression analysis.
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Abstract

Wireless sensor networks (WSNs) face critical challenges in fault detection that can compromise their quality of service 
in dynamic environments. This study introduces an integrated framework that enhances fault detection by combining 
advanced noise filtering, optimized feature selection, and a robust deep learning (DL) model. The framework employs 
a dynamic noise filtering technique with adaptive thresholding to effectively remove noise while preserving essential 
data integrity. Complementing this, the rank-based whale optimization algorithm refines feature selection, boosts 
model performance, and reduces computational demands. At its core, the hierarchical attention-based DL model 
utilizes temporal convolutional layers, long short-term memory units, and hierarchical attention mechanisms to capture 
both short-term and long-term dependencies in the data. Experimental evaluations on the WSN dataset demonstrate 
outstanding performance, with a precision of 0.98, a recall of 0.99, an F1-score of 0.98, and an area under the curve 
of 0.99 for all fault classes. Comparative analysis reveals that this framework outperforms existing approaches in 
terms of accuracy, sensitivity, specificity, and computational efficiency. Overall, the proposed solution improves fault 
detection and enhances network reliability, minimizes false alarms, and extends the operational lifespan of WSNs, 
offering a scalable approach for mission-critical applications in healthcare, environmental monitoring, and industrial 
automation.

Keywords: Dynamic Noise Filtering, Hierarchical Attention-based Deep Learning, Long Short-term Memory, Quality 
of Service, Rank-based Whale Optimization Algorithm, Wireless Sensor Networks

1. Introduction
Wireless sensor networks (WSNs) are a game-

changing technology that allows gathering, processing, 
and sending data from dispersed sensor nodes. These 
nodes can perceive and monitor their surroundings 
since they are outfitted with various sensors and 
communication tools (Gebremariam et  al., 2023). 
Environmental assessment, smart cities, healthcare, 
and industrial automation are just a few industries that 
use WSNs. Their capability to gather data remotely 
and in real-time from inaccessible or dangerous 
regions enables effective data-driven decision-
making (Chataut et al., 2023; Talukder et al., 2024). 
The sensitive nature of data being transferred and the 
possibility of network flaws make WSN security crucial 

(Yakubu and Maiwada, 2023). Data manipulation, 
denial of service attacks, and illegal access are just 
a few security risks that WSNs face (Nimbalkar et 
al., 2023). These dangers are more likely to affect 
WSNs because of their dispersed and wireless nature. 
Protecting the privacy, availability, and integrity of 
data in WSNs is essential to preserving these networks’ 
credibility and dependability (Alghamdi et al., 2023). 
The goal of intrusion detection, a crucial part of WSN 
security, is to identify and stop harmful activity on the 
network (Heidari and Jabraeil, 2022). Conventional 
rule-based intrusion detection systems frequently use 
predefined signatures or criteria, which are ineffective 
in identifying more complex assaults (Sezgin and 
Boyaci, 2022). One  method that has shown promise 
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for WSN intrusion detection is machine learning (ML). 
ML algorithms provide proactive and adaptive security 
measures by learning from past data and spotting 
abnormalities or patterns suggestive of possible 
breaches (Talukder et al., 2023). Intelligent intrusion 
detection systems may be developed in WSN owing 
to ML techniques. These algorithms can distinguish 
between benign and malicious behavior, analyze vast 
volumes of data, and identify odd trends (Ghazal, 
2022). By extracting useful information from intricate 
WSN datasets, ML techniques such as decision trees, 
random forests, neural networks, and gradient boosting 
techniques can increase the precision and efficacy of 
intrusion detection systems (Talukder et al., 2022).

Internet of Things (IoT) systems have unique 
characteristics, such as restricted bandwidth capacity 
(Qaiwmchi et al, 2020), limited energy, heterogeneity, 
global connection, and ubiquity, which make typical 
intrusion detection system solutions inadequate or 
less effective for their security. Deep learning (DL) 
and ML-related approaches have earned a reputation 
for their efficacious use in identifying network 
vulnerabilities, particularly those on IoT networks 
(Pandey et al., 2022). WSNs do not directly employ 
traditional network intrusion detection methods 
because of their poor computing and communication 
capabilities. Several WSN intrusion detection 
researchers can currently use ML algorithms to examine 
traffic data. Due to the WSN network’s growing user 
base and network size, it generates high-dimensional 
traffic data. Traditional ML models struggle with low 
feature extraction and detection accuracy, making them 
unsuitable for an application environment (Almomani, 
2021). The detection model’s precision can be 
increased using DL instead of ML models for intrusion 
detection systems, as they can learn the data flow 
features and reduce the computational load (Sharmin 
et al., 2023). This study aims to develop an integrated 
fault detection framework for WSNs that improves 
data reliability and overall network performance under 
dynamic conditions. The framework is designed to 
address challenges such as noise interference and high 
computational demands in fault detection based on the 
following contributions:
(i)	 Introduces a dynamic noise filtering (DNF) 

technique with adaptive thresholding to remove 
noise from sensor data while preserving critical 
information

(ii)	 Utilizes the rank-based whale optimization 
algorithm (RWOA) to select the most relevant 
and non-redundant features, thereby boosting 
model performance and reducing computational 
complexity

(iii)	 Develops a hierarchical attention-based DL 
(HADL) model that integrates temporal 
convolutional layers, long short-term memory 

(LSTM) units, and hierarchical attention 
mechanisms to capture both short-term and 
long-term dependencies in the data, leading to 
superior fault detection accuracy

(iv)	 Demonstrates exceptional performance on the 
WSN dataset (WSN-DS) with precision, recall, 
F1-scores, and area under the curve (AUC) 
values of 0.99 or higher, outperforming existing 
methods in accuracy, sensitivity, specificity, and 
computational efficiency.
This study provides a systematic overview 

of a research project addressing fault detection 
challenges in WSNs. It begins with an introduction; 
reviews existing studies; proposes a novel framework 
integrating noise filtering, feature optimization, and a 
hierarchical DL model; compares the approach against 
existing methodologies; and concludes with key 
contributions and potential future directions.

2. Related Work
The literature survey section provides a 

comprehensive overview of existing approaches in 
fault detection for WSNs. It examines the evolution 
of techniques in noise filtering, feature selection, and 
DL, identifying the strengths and limitations of current 
methodologies.

Tan et al. (2019) introduced an intrusion 
detection approach that leverages a random forest 
classifier enhanced by the synthetic minority 
oversampling technique to address dataset imbalance, 
improving accuracy from 92.39% to 92.57%. In a 
similar vein, Rezvi et al. (2021) employed a data 
mining framework to discern various types of denial of 
service attacks by comparing several classifiers—such 
as K-nearest neighbors (KNN), naïve Bayes, logistic 
regression, support vector machine, and artificial 
neural network—with their findings indicating that 
artificial neural network and KNN yielded superior 
accuracies of 98.56% and 98.4%, respectively. Meng 
et al. (2022) proposed an intrusion detection method 
tailored for resource-constrained WSNs, integrating a 
light gradient boosting machine with recursive feature 
elimination, Shapley additive explanations analysis, 
and an iterative tree model, in combination with the 
synthetic minority oversampling technique-Tomek 
balancing technique, which resulted in detection rates 
exceeding 99% for all attack types and a substantial 
reduction (46%) in modeling time.

Singh et al. (2020) developed a fuzzy rule-based 
intrusion prevention system that classifies sensor 
nodes into risk categories based on metrics, like packet 
delivery ratio, energy consumption, and signal strength, 
achieving an accuracy of 98.29% and effectively 
neutralizing malicious nodes. Alruhaily et al. (2021) 
designed a multi-tier intrusion detection architecture 
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incorporating a real-time naïve Bayes classifier at 
the network edge and a cloud-based random forest 
classifier for comprehensive packet analysis, with their 
system delivering high detection accuracies across 
various attack categories. Complementing these efforts, 
Chandre et al. (2022) employed a convolutional neural 
network within a DL framework to detect and prevent 
intrusions by extracting robust feature representations 
from extensive labeled datasets, reaching an accuracy 
rate of 97%.

Further advancing the field, an optimized 
collaborative intrusion detection system was proposed 
by Elsaid and Albatati (2020) using an updated 
artificial Bee colony optimization (BCO) algorithm 
that enhanced resource efficiency and detection 
accuracy while integrating a weighted support vector 
machine to minimize false alarms through effective 
coordination among base stations, cluster heads, and 
sensor nodes. Addressing data imbalance in WSN 
cyberattacks, Putrada et al. (2022) demonstrated that 
extreme gradient boosting outperformed decision 
trees and naïve Bayes by achieving the highest AUC 
values across multiple attack classes. Ravindra 
et al. (2023) introduced an innovative anomaly 
detection technique that utilizes data compression 
and dynamic thresholding, powered by an enhanced 
extreme learning machine coupled with an enhanced 
transient search arithmetic optimization (ETSAO) 
algorithm, which successfully reduced computational 
overhead and achieved a 96.90% accuracy on the 
WSN-DS. Finally, Alruwaili et al. (2023) presented 
the red kite optimization algorithm (RKOA) with 
an average ensemble model for intrusion detection 
(AEID) methodology for IoT-based WSNs, which 
incorporates feature selection through RKOA, min-
max normalization, and an average ensemble learning 
model with hyperparameter tuning using a Lévy-fight 
chaotic whale optimization technique, resulting in an 
improved accuracy of 98.94%.

While current methodologies effectively 
address individual aspects such as detection 
accuracy, computational efficiency, and class 
imbalance, they seldom integrate noise filtering, 
feature selection, and DL-based fault detection into 
a unified framework. Moreover, many approaches 
do not fully exploit hierarchical DL architectures 
capable of capturing both short-term and long-term 
temporal dependencies inherent in sensor data. This 
gap underscores the need for a comprehensive and 
scalable solution that simultaneously enhances 
network reliability, minimizes false alarms, and 
extends the operational lifespan of WSNs, thereby 
offering robust performance in dynamic and 
resource-constrained environments.

3. Proposed Methodology
The proposed methodology introduces an 

advanced framework (Fig.  1) for fault detection 
in WSNs, addressing the critical challenges of 
noise interference, suboptimal feature selection, 
and inaccurate fault classification in dynamic 
environments. By integrating a suite of cutting-edge 
techniques, the approach ensures enhanced fault 
detection accuracy and robust network performance 
while optimizing computational efficiency. The 
methodology begins with DNF using adaptive 
thresholding, a real-time noise mitigation strategy that 
dynamically adjusts thresholds based on statistical 
analysis of noise patterns in sensor data. This ensures 
the preservation of critical fault-indicative information 
while filtering out irrelevant fluctuations, even under 
varying environmental conditions. This adaptive 
mechanism significantly enhances the data quality 
fed into the fault detection pipeline. To extract the 
most relevant and non-redundant features, an RWOA 
was utilized. This novel metaheuristic optimization 
approach combines the global exploration capabilities 
of WOA with feature relevance ranking using mutual 
information. By balancing classification accuracy 
and feature dimensionality, the RWOA ensures the 
selection of an optimal, compact feature set, reducing 
computational overhead while maintaining precision.

For fault classification, the proposed framework 
leverages an HADL model. This multi-layered 
architecture incorporates temporal convolutional layers 
to capture short-term patterns and anomalies, followed 
by LSTM layers to model long-term dependencies in 
time-series data. The centerpiece of HADL is its dual-
level hierarchical attention mechanism, which prioritizes 
critical features within each time step and across the 
sequence, maximizing interpretability and decision 
accuracy. The final classification layer delivers precise 
fault predictions, adapting to the complexities of real-
world WSN scenarios. The proposed methodology 
establishes a high-performance fault detection framework 
by synergistically combining noise filtering, feature 
optimization, and a DL-based classification model. This 
approach not only enhances the quality of service but 
also ensures the scalability, reliability, and efficiency 
of WSNs in mission-critical applications. Integrating 
adaptive mechanisms and optimization-driven feature 
selection represents a significant advancement in fault 
detection technology, paving the way for more resilient 
and intelligent WSN deployments.

3.1. DNF Technique with Adaptive Thresholding
Initially, a DNF technique with adaptive 

thresholding effectively filters out noise while 
preserving critical data for fault detection in WSNs. 
First, the technique continuously monitors incoming 
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sensor data to assess the real-time noise levels and 
distribution patterns. It then calculates statistical 
properties, such as the mean and standard deviation 
of the noise, across a sliding window of recent data. 
Based on these calculations, the method dynamically 
adjusts the noise threshold, increasing it during high-
noise periods to avoid false positives and lowering 
it when data quality improves to ensure that subtle 

faults are not missed. This adaptive threshold is then 
applied to filter out noise, allowing only data points 
that exceed an adjusted threshold to pass through 
for further processing. The process is repeated 
continuously, ensuring the filtering adapts to changing 
network conditions, resulting in a more accurate and 
reliable dataset for subsequent analysis.

DNF with adaptive thresholding is a technique 

Fig. 1. Flow diagram of the proposed methodology
Abbreviations: HADL: Hierarchical attention-based deep learning; TDMA: Time-division multiple access
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used to improve the data quality in systems like WSNs, 
where data can be corrupted by noise due to various 
factors like sensor malfunctions, environmental 
interference, or communication issues. This method 
enhances the signal-to-noise ratio by removing noise 
without losing important information. This component 
refers to identifying and reducing noise in the data in 
real-time or dynamically, based on varying conditions. 
The noise filtering adapts to the type of noise and 
the changing characteristics of the signal. In a WSN, 
sensor readings can be affected by several types of 
noise, such as random fluctuations or environmental 
disturbances. DNF identifies and selectively removes 
these anomalies in the data, ensuring that useful 
signals are preserved.

Thresholding involves setting a limit (threshold) 
above or below which the data is considered noise or 
valid. Adaptive thresholding adjusts this threshold 
based on the current state of the data. In a dynamic 
environment, where sensor data characteristics change 
over time, a static threshold might not work effectively. 
The adaptive threshold is recalculated periodically or 
based on specific criteria, such as the variance of the 
data, the signal strength, or statistical measures of the 
data distribution. For example, if the sensor data shows 
sudden spikes or sharp drops (indicative of noise), the 
threshold can be adjusted to treat these as noise and filter 
them out. Conversely, when data becomes more stable 
or predictable, the threshold can be widened to capture 
a broader range of valid information. The algorithm for 
DNF with adaptive thresholding is as follows:
(i)	 Step 1: The system continuously monitors 

incoming sensor data for unusual patterns, 
sudden spikes, or deviations from expected 
values, characteristic of noise

(ii)	 Step 2: The system uses adaptive techniques to 
determine a dynamic threshold that reflects the 
current data distribution, variability, or other 
environmental factors. The threshold changes 
are based on observed conditions, such as the 
variance of the signal or the presence of unusual 
outliers

(iii)	 Step 3: Data points outside the adaptive threshold 
are flagged as noise and discarded or replaced. 
The remaining data is preserved for further 
processing and analysis

(iv)	 Step 4: By dynamically adjusting the threshold, 
the method ensures that important or meaningful 
data is not discarded while filtering out noise. This 
allows for better quality input for downstream 
analysis, such as fault detection in WSNs.
Removing noise without discarding useful data 

improves the quality of sensor readings, leading to 
better analysis and decision-making. The adaptive 
threshold can adjust to different types of noise or 
changes in the network conditions, making it more 

robust in dynamic environments. In systems like fault 
detection, reducing noise ensures that only actual faults 
are detected, minimizing false alarms. In summary, 
DNF with adaptive thresholding ensures that the data 
used for analysis in WSNs or similar systems is of high 
quality, with noise effectively removed based on real-
time conditions.

3.2. RWOA Technique
This research presents an RWOA to improve 

the efficacy of feature extraction. It uses the latest 
developments in metaheuristic optimization 
techniques to find the most pertinent features for defect 
identification. To start, the WOA searches the feature 
space to optimize a fitness function that strikes a 
compromise between feature set size and classification 
effectiveness. The algorithm effectively explores the 
search space, avoiding local optima and locating the 
optimal solution globally by imitating the bubble-net 
feeding method of humpback whales. Features with 
stronger correlations are given larger weights. In 
parallel, the dependence of each characteristic on the 
goal variable (i.e., defect or normal state) is evaluated 
using mutual information. The selected features from 
the WOA are then refined using the mutual information 
ranking, ensuring that only the most informative 
and non-redundant features are retained. This hybrid 
approach significantly improves the robustness and 
accuracy of the fault detection model by ensuring that 
the extracted features are both optimal in relevance 
and minimal in quantity, reducing the computational 
burden.

One of the popular population-based 
metaheuristic algorithms for solving global 
optimization problems in various fields is the WOA 
algorithm, developed by Mirjalili and Lewis (2016). 
The humpback whale’s natural hunting behavior 
serves as the model for this program. At the water’s 
surface, humpback whales hunt by focusing on schools 
of krill or tiny fish. To encircle and seize their prey, 
they form characteristic bubbles in a spiral pattern. 
The whales descend and swim to the water’s surface, 
creating spiral bubbles around the prey. The WOA 
uses three tactics to mimic whale behavior: (i) spiral 
bubble-net attacking (exploitation phase), (ii) hunting 
for prey (exploration phase), and (iii) surrounding the 
target. X x x xi

t
i
t

i
t

i D
t� �� �, , ,, , ,1 2  represents the location 

of the ith whale at iteration t, where i = 1,2,…, N and N 
and D represent the whale population and the problem’s 
dimensions, respectively.

3.3. Encircling Prey Strategy
Whales can track down and enclose their prey. 

The ideal choice for whales in WOA is the target prey 
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or a nearby location inside the search area. Eq. (1) is 
used by other whales to update their location as they 
try to approach the ideal agent during prey encirclement. 
This equation is constructed with t representing the 
current iteration, Xi

t  representing the ith whale’s 
location for the current iteration, and X*t representing 
the position vector of the best solution, thus far, which 
is updated in each iteration if a better solution is 
discovered.

X X A Di
t t� � � �1 * � (1)

D C X Xt
i
t� � �* � (2)

where D stands for the distance between the 
whale and the prey X*t, which is established by Eq. 
(2). I  denote the absolute value, A and C represent 
coefficient vectors that are established using Eqs. (3) 
and (4).

A = 2 × a × r−a� (3)

C = 2 × r� (4)

a t
MaxIter

� � ��
�
�

�
�
�2 2 � (5)

According to Eq. (5), the parameter r in Eqs. (3) 
and (4) are random numbers in the interval, whereas 
Eq. (3) declines linearly from 2 to 0 repetitions. The 
values t and Maxiter are used in Eq. (5) to represent the 
current iteration and the total number of iterations. 
Through the use of the parameter a, the whales are 
gradually brought into the surrounding scope.

3.4. Spiral Bubble-net Attacking Strategy
Humpback whales use a bubble net to spiral 

toward their prey and corner them. Two strategies are 
used to mathematically represent this strategy: spiral 
updating position and shrinking encircling.

3.4.1. Shrinking encircling method
In Eq. (3), this tendency is reflected by reducing 

the value of the convergence variable a. Furthermore, 
the alternate range of A fluctuation is linearly lowered 
from 2 to 0, utilizing the parameter a through iterations. 
In other words, A is a random value belonging to the 
interval [−a,a].

3.4.2. Spiral updating position method
First, this method calculates the distance between 

whales Xi
t  using Eq. (6); X*t is the best result thus far. 

Next, a spiral migration from its present location 
towards an ideal solution is described using Eq. (7). In 
these calculations, the logarithmic spiral shape is 

determined by a constant parameter, b, and a random 
variable, l, between [−1,1].
D X Xt

i
t' *� � � (6)

X D e l Xi
t bl t� � � � �1 2' *cos( )� � (7)

The logarithmic spiral form is determined by 
a fixed parameter, b and a random value, l, that falls 
between [−1,1]. The humpback whale swims in WOA, 
spiraling around its prey in a tight circle. The spiral 
model or the diminishing encircling method is the two 
options the whale chooses for changing its location 
during the optimization phase. The mathematical 
model is defined by Eq. (8), where p is a random 
number in [0, 1].

X
X A D if p
D e l X if pi

t
t

bl t
� �

� � �
� � � �

�
�
�

1 0 5

2 0 5

*

' *cos

.

( ) .�
� (8)

3.5. Searching for Prey Strategy
Whales employ this strategy to increase 

population diversity and seek the problem space 
for uncharted territory. A  randomly selected search 
agent updates the position of each whale. To avoid 
being caught in a local minimum, the search agent 
is pushed away from a randomly chosen humpback 
whale using the parameter A. Eq. (9) is employed for 
exploration [31].

1 

 

+ = − ×

= × −

t
i rand

t
rand i

X X A D

D C X X
� (9)

here A and C are calculated using Eqs. (3) 
and (4), and Xrand is a random position vector in the 
search space chosen from the available whales in the 
population.

After N, when whales are randomly distributed 
over the search space, the association objective function 
value is determined, as seen in the WOA flowchart in 
Fig. 2. When the initial values of the control parameters 

Fig. 2. Area under the curve (AUC) of the classes
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are altered, the optimization begins with the present 
iterations. At each iteration, the value of the parameter 
p is then evaluated. Eq. (7) specifies the spiral updating 
position method used by whales when p ≥ 0.5. Whales 
update their location when p < 0.5 using the encircling 
prey strategy (Eq. [1]) if |A|<1 and the hunting for prey 
strategy (Eq. [9] if |A|≥1). Subsequently, the fitness 
and viability values of the newly gained positions are 
computed. Next, the ideal solution is updated, and 
WOA is ultimately ended.

The WOA is based on humpback whale 
hunting behavior, mimicking the bubble-net strategy. 
It involves exploration and exploitation, with 
whales randomly moving in search of space and 
using shrinking encircling mechanisms and spiral 
movements. However, WOA can face challenges like 
premature or slow convergence due to poor exploration 
and exploitation balance. The rank-based method 
is introduced in RWOA to enhance the population 
selection mechanism during the optimization process. 
This method changes how whales are selected for 
exploration and exploitation by considering their rank 
in the population rather than selecting them randomly 
or with equal probability.

3.5.1. Rank assignment
After evaluating the fitness of all candidates 

(whales), they are ranked based on their fitness values 
(i.e., solutions with lower objective function values 
are ranked higher if the goal is minimization). Each 
individual in the population is assigned a rank based 
on their fitness, with the best solution (with the lowest 
fitness) getting rank 1, the second-best getting rank 2, 
and so on.

3.5.2. Probability-based selection
Instead of choosing individuals to update their 

position randomly or based on fixed probabilities, 
rank-based selection assigns higher probabilities 
to individuals with better (lower) ranks. The better 
individuals (those with better fitness) are more likely 
to be selected for the exploitation phase, while the 
worse individuals are more likely to be selected for the 
exploration phase. A non-linear probability distribution 
is often used, so the probability of selecting a whale 
is inversely proportional to its rank. This ensures that 
the algorithm focuses more on promising solutions 
while maintaining some diversity by allowing worse 
solutions to participate in the search process.

3.5.3. Exploration and exploitation
During the exploration phase, the worst-ranked 

individuals (those with higher ranks) can move freely, 

encouraging the algorithm to explore a wide area of the 
search space. During the exploitation phase, the best-
ranked individuals (those with lower ranks) are more 
likely to contribute to the search, refining the solution 
by focusing on regions with promising results.

3.5.4. Fitness-based movement
The movement of each whale is influenced by its 

rank. For example, for better individuals (lower ranks), 
they will likely refine their position by getting closer to 
the best solution. For worse individuals (higher ranks), 
they are more likely to perform a broader search to 
avoid premature convergence and encourage diversity.

3.5.5. Rank-based update of positions
The whale’s position update rule, which typically 

involves a spiral or encircling mechanism, can also be 
influenced by the whale’s rank. For example, whales 
with better ranks (i.e., better solutions) may use the 
shrinking encircling method with higher probabilities 
to exploit reasonable solutions, while whales with 
worse ranks can have a higher probability of using 
random search to explore new regions of the search 
space.

The RWOA improves convergence by ensuring 
better solutions drive the search process, leading to 
faster and more accurate results. It enhances diversity 
by allowing worse solutions to explore the search space, 
avoiding premature convergence, and maintaining 
population diversity. RWOA also balances exploration 
and exploitation, allowing for a broader search space 
and reducing the risk of stagnation by encouraging 
weaker solutions to explore new areas.

3.6. Hierarchical Attention-based DL Model
Finally, a HADL model is employed for fault 

detection in WSNs, which starts with an embedding 
layer that converts the raw input features from the 
WSN-DS into dense vectors, capturing the underlying 
patterns in a compressed form. Following this, 
temporal convolutional layers detect patterns and 
anomalies over short data sequences, focusing on how 
features change over time. These layers help identify 
sudden shifts or unusual trends that might indicate 
faults. Next, recurrent layers, such as LSTM units, 
capture long-term dependencies in the time-series data, 
effectively modeling how earlier data points influence 
future observations. The central innovation of HADL 
is its hierarchical attention mechanism, which is 
applied at multiple stages: first, to highlight the most 
relevant features within each time step, and then to 
focus on the most important time steps across the 
sequence. This dual-level attention ensures the model 
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prioritizes the most critical information for accurate 
fault detection. Finally, the processed data is passed 
through a fully connected layer, which integrates the 
information from all previous layers and leads to a 
softmax classification layer. This final layer provides a 
probability distribution over the fault classes, allowing 
the model to make precise and confident predictions 
about the network’s state. This layered structure of 
HADL ensures that the model effectively captures both 
immediate and long-term patterns in the data, leading 
to enhanced accuracy in detecting faults in WSNs.

The rank-based selection in RWOA improves 
convergence by ensuring better solutions drive the 
search process, leading to faster and more accurate 
results. It enhances diversity by allowing worse 
solutions to explore the search space, avoiding 
premature convergence, and maintaining population 
diversity. RWOA also balances exploration and 
exploitation, allowing for a broader search space and 
reducing the risk of stagnation by encouraging weaker 
solutions to explore new areas.

Recurrent neural networks are widely known for 
their ability to capture the dynamics of sequential data 
when working with time-sequence data supplied by 
monitoring systems. In contrast to a traditional neural 
network, HADL neurons are reinforced by including 
edges that span neighboring time steps. These links, 
which are referred to as recurrent edges, create cycles 
that are self-connected of a neuron to itself over time, 
adding a temporal component to the model data space. 
The behavior of a neuron with recurrent edges in a 
basic recurrent network may be explained as follows 
in Eq. (10):

h(t) = F(Wh(t−1)+Ux(t) + bh)

y(t) = G(Vh(t)+ by)� (10)

where h(t) represents the hidden layer activation 
at time t, h(t−1) represents the previously hidden 
representation, and x (t) represents the input layer’s 
current input. The input-to-hidden, hidden-to-hidden, 
and hidden-to-output connections are parametrized 
by the weight matrices W, U, and V, respectively, 
within the HADL. The output layer and hidden 
layer bias parametersby and bh allow offset learning. 
The two layers’ activation functions are F and G, 
respectively. The recurrent neural network’s output 
is y(t). In contrast to the propagation between layers, 
which is cyclic, the data propagation is one-way in 
the time direction when the network is unfurled from 
left to right. The distinction lies in the weights (W) 
being shared between time steps. The network may 
therefore be trained across several time steps using a 
backpropagation approach. As t2–t1 grows in size, the 
input’s contribution to time step t2 will either move to 
infinity or decay to zero since the weights are the same 
for all time steps. The loss gradient will also either 

burst or decay to the input, depending on the activation 
function f and whether |W| > 0 or |W|<0.

In the HADL method, every neuron in the hidden 
layer is substituted by a memory cell architecture with 
a core node known as the state unit s(t). This model’s 
architecture is similar to that of a typical recurrent 
neural network with a hidden layer. Like a typical 
neuron in a hidden layer, the cell has external outputs 
to the next time step and the layer below, as well as 
external inputs from the previous layer and the prior 
state. In addition, it features an internal set of gating 
units that use multiplication to regulate the information 
flow. Updates are made to the forgetting gate unit fi

(t), 
state unit s(t), input gate unit gi

(t), output gate unit qi
(t), 

and output hi
(t) for each time step t based on the current 

input xj
(t) and the prior output hj

(t−1). Below is the 
computing process for an LSTM model at each stage 
(Eq. [11]):
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The state unit and the three gate units are all 
triggered by the sigmoid function σ (‧) and have their 
own bias bi, input weights Ui,j, and recurrent weights 
Wi,j. Ultimately, the HADL cell’s output is modified 
to reflect the hidden layer vector hi

(t). When an input/
output gate is activated in the forward direction, the 
HADL may learn when and to what degree to let 
values in/out. The value of the hidden layer will neither 
increase nor decrease if both gates are closed, meaning 
that neither outputs nor intermediate time steps will be 
impacted. The gradients can also propagate backward 
throughout many time steps without disappearing or 
bursting. That is, gates may learn when to allow error 
to enter and when to limit it. The ability of HADL to 
learn long-term dependencies more effectively than 
standard recurrent designs has made it popular for a 
wide range of real-world applications.

The degree to which each input contributes to 
a target class of interest c, or the relevance score of 
each input concerning c, are among the things we are 
interested in understanding, given a trained neural 
network classifier. The fundamental principle behind 
HADL is to assign a relevance score to each input by 
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tracking each one’s layer-by-layer contribution to the 
final prediction, f(x). According to the conservation 
principle, the overall relevance allocated to one layer 
should match the total relevance allocated to the layer 
before. This is what the HADL method does. Given 
two successive layers of a neural network, let’s say m 
and n, the relevance scores meet the following criteria 
(Eq. [12]):

i
i
m

i
i
nR R f x� �� � � �( ) ( ) � (12)

In layers m and n, respectively, the relevance 
scores of individual neurons are denoted by Ri

(m) and 
Ri

(n). The rules governing the propagation of relevance 
scores between two layers by Eq. (9) are varied to 
accommodate the features of various neural network 
structures. Eq. (13) illustrates a basic rule:

R
z
z

Ri
m

j

i j

k k j
j
n( ) ,

,

( )� ��
� (13)

where ∑k zk,j is the total contribution/relevance 
delivered to neuron j from all linked neurons in layer 
m before the application of a nonlinear activation 
function; and zi,j is the contribution/relevance received 
by neuron j in layer n from an activated neuron i in 
layer m. This equation demonstrates the conservation 
principle, which also holds for deactivation, 
unconnected neurons, and zero weight (Eq. [14]).
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Despite the HADL rule’s many desirable 
qualities, robustness, and other improvements must 
be taken into account when applying it to real-world 
situations (Eq. [15]).
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To maintain numerical stability, the denominator 
has a modest positive term ε in comparison to the 
fundamental rule, where both the beneficial and 
detrimental effects from the upper layer n are denoted 
by zi,j

+ and zi,j
−, respectively, and the weights of the 

positive and negative contributions are controlled by 
α and β. α+β should be in line with the conservation 
principle. To provide the outcomes with stability and 
interpretability, the rule prefers the effects of positive 
contributions over negative ones. One can manually 
regulate the significance of positive and negative 
contributions by carefully selecting the values of 
coefficients α and β.

Temporal convolutional networks with LSTM 
and other gated neural networks feature a unique 
calculation called multiplicative interaction in 

addition to linear mapping computation in multi-
layer perceptron architectures. Two neurons are 
multiplied by one another in this calculation, with 
one acting as a signal and the other as a gate that 
regulates the degree to which the signal affects the 
output (Eq. [16]):

ap = f(zg)⋅g(zs)� (16)

where zg and zs are two neuron values supplied to 
the gate and signal unit from earlier layers, respectively, 
f(⋅) is the gate unit’s activation function, and g(⋅) is the 
signal unit’s activation function.

In contrast to linear mapping, multiplicative 
interaction’s nonlinearity presents unique challenges 
related to reassigning importance to the preceding 
layer. An established redistribution hierarchical method 
known as “signal-take-all” is used when activation is 
obtained by multiplying the value of a gate neuron by 
the value of a signal neuron. This strategy includes 
(Eq. [17]):

(Rg,RS) = (0,Rp)� (17)

where the relevance scores for the gate and 
signal neurons are denoted by Rg and Rs, respectively. 
To comply with the conservation principle, the gate 
neuron takes zero, while the signal neuron takes all of 
the relevant Rp from the top layer.

The HADL is a versatile ML approach that excels 
in modeling complex data with multiple hierarchical 
relationships. Its attention mechanisms enhance model 
interpretability, allowing for a better understanding 
of the prioritization of features. HADL captures 
short-term and long-term dependencies, making it 
ideal for tasks like time-series analysis in WSNs. It 
also enhances feature learning with its hierarchical 
structure, allowing for better generalization and 
robustness in anomaly or fault detection tasks. HADL 
is adaptable to complex and noisy data, reducing 
overfitting and improving performance on time-series 
and sequential data. Its hierarchical nature allows it to 
scale efficiently to large datasets, making it suitable for 
real-world applications.

4. Results and Discussion

This section thoroughly analyzes the 
experimental results to assess the efficacy and 
efficiency of the suggested approach. The outcomes 
are compared to several cutting-edge methods using 
various criteria, including sensitivity, specificity, 
accuracy, and F1-score. The suggested approach 
outperformed the other methods by utilizing DL 
models and sophisticated optimization techniques, 
attaining near-perfect or perfect values in important 
measures.
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4.1. Experimental Setup
The discussion focuses on interpreting these 

results, highlighting the impact of the proposed 
approach on fault detection in WSN, and addressing 
how the method fills existing research gaps in reliability 
and precision. The experiments used Python 3.7 as the 
implementation platform, leveraging libraries such as 
NumPy, Pandas, TensorFlow/PyTorch, Scikit-learn, 
and Matplotlib for model development, optimization, 
and visualization. The system’s performance was 
evaluated under controlled conditions to ensure the 
robustness and generalizability of the results. The 
implementation and experimentation were performed 
on the following system configuration:
(i)	 Processor: Intel Core i7-12700H (12th Gen) with 

14 cores (6 performance + 8 efficiency cores) 
and a clock speed up to 4.7 GHz

(ii)	 Random access memory: 16 GB DDR4  3200 
MHz, enabling efficient data handling and 
processing of large datasets

(iii)	 Storage: 1 TB NVMe SSD, ensuring fast data 
read/write operations and loading of large models

(iv)	 Operating system: Windows 11  64-bit, with 
Python 3.7 as the programming environment

(v)	 Software frameworks: TensorFlow 2.9, PyTorch 
1.12, Scikit-learn 1.1, and Matplotlib 3.5.
This high-performance configuration ensured 

the smooth execution of computationally intensive 
tasks, such as hyperparameter tuning, training DL 
models, and performing iterative optimization. The 
experiments were iteratively refined to achieve 
optimal results, balancing computational efficiency 
and prediction accuracy. The setup included advanced 
optimization algorithms, fault detection models, and 
dynamic filtering techniques, tested under controlled 
conditions to ensure reliable and reproducible results. 
This environment facilitated seamless experimentation, 
from pre-processing the WSN-DS to training and 
evaluating the proposed HADL.

4.2. Dataset Description
The WSN-DS used in this study is a 

comprehensive and widely used benchmark for fault 
detection in WSNs. It contains various simulated data 
representing five distinct classes: normal, grayhole, 
blackhole, time-division multiple access (TDMA), 
and flooding. The dataset includes a total of 60,000 
instances, with each instance comprising detailed 
features that capture the behavior and state of network 
nodes under different conditions. The normal class 
represents typical, fault-free network operations, while 
the remaining classes correspond to various network 
faults and malicious attacks, such as packet-dropping 
and routing disruptions. Each class is well-balanced, 
ensuring robust performance evaluation across all fault 

categories. The dataset provides feature-rich instances, 
including metrics like node energy levels, packet 
counts, delays, and routing information, offering 
a realistic simulation of network scenarios. These 
features were carefully pre-processed, normalized, and 
split into training and testing sets to facilitate effective 
model training and validation. This dataset serves as an 
ideal foundation for evaluating the performance of fault 
detection methods in complex WSN environments.

4.3. Performance Metrics
Fig.  3 illustrates the convergence behavior and 

effectiveness of the RWOA. The initial phase, from 
the first to the second iterations, shows a significant 
drop in fitness value, indicating the algorithm’s 
exploratory phase. From the second to the seventh 
iterations, the plateau phase is marked by a plateau, 
where the algorithm focuses on refining solutions 
within a promising region. The further refinement 
phase decreases slightly to 0.0267, indicating a near-
optimal solution and fine-tuning results. The graph 
demonstrates the algorithm’s efficiency in narrowing 
down the search space, the plateau phase, where 
the algorithm focuses on exploitation, and the final 
convergence, where the algorithm has converged 
to a solution near the global optimum. This graph 
demonstrates the algorithm’s ability to efficiently 
find an optimal solution while avoiding unnecessary 
computations beyond the point of diminishing returns.

The confusion matrix represents the performance 
of a classification model across five classes: Normal, 
Grayhole, Blackhole, TDMA, and Flooding (Fig. 4). 
The diagonal elements indicate the correctly classified 
instances, while off-diagonal elements represent 
misclassifications. The model performs well overall, 
with high accuracy for each class, as evidenced by 
the large diagonal values. For example, normal has 
11,857 true positives, with minimal misclassifications. 

Fig. 3. Convergence behavior and effectiveness of the 
rank-based whale optimization algorithm
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Similarly, grayhole achieves 11,885 correct 
classifications, though 86 instances were misclassified 
as blackhole and three as normal. The blackhole 
class also performed well, with 11,950 true positives 
and minor misclassifications. For TDMA, the model 
correctly identified 11,695 instances, though there is 
some confusion with normal, grayhole, and blackhole. 
Finally, the Flooding class exhibited near-perfect 
classification, with 11,991 correct predictions and no 
significant misclassifications. The confusion matrix 
highlights the model’s robustness but also reveals areas 
for improvement, such as reducing misclassifications 
between normal and TDMA and minimizing confusion 
between grayhole and blackhole.

The AUC values for the five classes (0–4) 
indicate the model’s excellent discriminatory ability 
across all categories (Fig. 2). AUC values ranged from 
0 to 1, with values closer to 1 representing superior 
performance. Here, the AUC for class 0 (Normal) and 
class  3 (TDMA) is 0.99, indicating that the model 
can distinguish these classes from the others with 
near-perfect accuracy. For class 1 (Grayhole), class 2 

(Blackhole), and class  4 (Flooding), the AUC is a 
perfect 1, demonstrating flawless classification for 
these classes. This suggests that the model had no 
false positives or negatives for classes 1, 2, and 4, 
showing exceptional precision and recall. Overall, the 
AUC values underscore the model’s high reliability 
and effectiveness in differentiating between all classes, 
with minimal room for improvement.

The accuracy and loss curves in Fig.  5A and  B 
depict the model’s performance during training and 
testing. In plot 5A, the accuracy curve steadily increases 
during training, indicating that the model is learning 
effectively from the data. The testing accuracy also 
improves and stabilizes, closely aligning with the 
training accuracy, suggesting good generalization and 
minimal overfitting. In plot 5B, the loss curve decreases 
over epochs for both training and testing, reflecting a 
reduction in prediction errors as the model optimizes 
its parameters. The convergence of training and testing 
loss at low values confirms the model’s robust learning 
process. A smooth and stable trajectory for both accuracy 
and loss curves indicates that the model training is well-
tuned, with no signs of underfitting or overfitting, and 
performs consistently on unseen test data.

Fig. 6 shows the performance metrics for training 
and testing. With an overall accuracy of 99%, the 
model performed exceptionally well in the testing 
phase across all five classes of WSNs. With values 
near 0.99 or 1.00, the model’s accuracy, recall, and 
F1-scores were continuously high, demonstrating its 
capacity to accurately detect occurrences of each class 
while reducing false positives and false negatives. With 
a perfect score, the flooding class exhibited faultless 
detection. The performance of other classes, such as 
blackhole and grayhole, was also strong. Weighted and 
macro average measures further support the model’s 
balanced performance across classes. The model’s 
outstanding performance during training and testing, 
together with its ability to balance accuracy, recall, and 
F1-score, shows its usefulness in real-world situations 
where reliable and precise fault classification is required.

Fig. 4. Confusion matrix
Abbreviation: TDMA: Time-division multiple access

Fig. 5. (A and B) Accuracy and loss curves

BA
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4.4. Comparison Metrics

Fig.  7 shows the performance of various 
methods, including RKOA-AEID (Alruwaili et al., 
2023), Adaboost (Aljebreen et al., 2023), gradient 
boosting (Aljebreen et al., 2023), extreme gradient 
boosting (Alqahtani et al., 2019), KNN-angle of arrival 
(Liu et al., 2022), KNN-particle swarm optimization 
(Liu et al., 2022), and the proposed method, across four 
evaluation metrics: accuracy, F1-score, specificity, and 

sensitivity (Table 1). The proposed method achieved 
the highest accuracy (99%), demonstrating superior 
reliability in fault detection. RKOA-AEID performed 
well (98%), while Adaboost and KNN-particle swarm 
optimization performed moderately (94%). Gradient 
boosting, extreme gradient boosting, and KNN-angle 
of arrival exhibited intermediate results (97%). The 
proposed method excelled with a perfect F1-score 
(100%), indicating an exceptional balance between 
precision and recall. Adaboost and gradient boosting 

Fig. 7. (A-D) Comparative analysis for performance metrics
Abbreviations: AOA: Angle or arrival; GB: Gradient boosting; KNN: K-nearest neighbor; RKOA-AEID: Red kite 

optimization algorithm-average ensemble model for intrusion detection; PSO: Particle swarm optimization; 
XG Boost: Extreme gradient boosting

B

C D

A

Fig. 6. (A and B) Performance metrics for training and testing
Abbreviation: TDMA: Time-division multiple access
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https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X


DOI: 10.6977/IJoSI.202510_9(5).0005
R. Gayathri, K.N. Shreenath, etc./Int. J. Systematic Innovation, 9(5), 56-70 (2025)

68

Table 1. Comparative chart of the proposed model with conventional methods
Methods Accuracy Sensitivity Specificity F‑score
Red kite optimization algorithm‑average ensemble model for intrusion 
detection (Alruwaili et al., 2023)

98.94 75.33 96.45 79.52

AdaBoost (Aljebreen et al., 2023) 95.69 69.22 95.00 76.13
Gradient booting (Aljebreen et al., 2023) 94.58 71.03 94.09 71.92
Extreme gradient boosting (Alqahtani et al., 2019) 96.83 71.51 94.43 71.01
K‑nearest neighbor‑angle of arrival (Liu et al., 2022) 97.20 70.16 96.04 73.85
K‑nearest neighbor‑particle swarm optimization (Liu et al., 2022) 92.89 71.30 95.08 70.48
Proposed 99.25 98.74 99.32 98.39

lagged (75%), reflecting weaker handling of false 
positives or false negatives. Extreme gradient boosting 
and KNN-angle of arrival performed moderately 
(97%). The proposed method consistently outperforms 
all other techniques, achieving perfect F1, specificity, 
and sensitivity scores and near-perfect accuracy.

5. Conclusion

This research presents a unified framework 
for fault detection in WSNs that effectively 
combines advanced noise filtering, optimized feature 
selection, and a sophisticated DL architecture. The 
proposed approach leverages a DNF technique with 
adaptive thresholding to cleanse the data while 
preserving its critical aspects, employs the RWOA 
to select the most relevant features, and utilizes an 
HADL model to capture both short-term and long-
term dependencies in sensor data. Experimental 
evaluations of the WSN-DS confirm the framework’s 
exceptional performance, achieving an accuracy 
of 99.25%, sensitivity of 98.74%, specificity of 
99.32%, and an F-score of 98.39%. These results 
highlight the framework’s capacity to reliably detect 
faults and reduce false alarms, ultimately enhancing 
network reliability and extending the operational 
lifespan of WSNs. The integration of these advanced 
methodologies not only addresses existing challenges 
in fault detection but also establishes a robust 
foundation for future enhancements, including real-
time deployment and the incorporation of multi-
modal data.
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