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Abstract

The massive growth of electronic data has created a demand for efficient tools to manage information and support
fast decision-making. Automatic text summarization (ATS) addresses this by condensing large texts into concise,
relevant summaries rapidly. ATS methods are categorized as extractive, abstractive, or hybrid. Extractive techniques
select key sentences from input documents, whereas abstractive techniques generate new sentences to capture
meaning. Hybrid methods combine both strategies. However, despite numerous suggested techniques, machine-
generated summaries often fail to match the accuracy and coherence of human-written summaries. This study
reviewed existing ATS techniques and highlighted their limitations, particularly high computational costs and
low training efficiency. To address these problems, this study proposed an improved multilayer extreme learning
machine autoencoder (MLELM-AE) and an ensemble learning framework that integrates four machine learning
models: Sentence-bidirectional encoder representations from transformers, autoencoder, variational autoencoder, and
the improved MLELM-AE. The proposed framework generates summaries through cosine similarity evaluation,
followed by voting-based fusion, re-ranking, and optimal sentence selection. Experimental results showed that the
proposed improved MLELM—AE model achieved strong performance, with an execution time of 50,015 ms and a
recall-oriented understudy for gisting evaluation 1 score of 0.865145. These findings demonstrate that the proposed
ensemble framework delivers more accurate and efficient summaries, offering a promising advancement in ATS.

Keywords: Automatic Text Summarization, Bidirectional Encoder Representations from Transformers, Deep Neural
Networks, Multilayer Extreme Learning Machine Autoencoder, Word Embedding, Word2vec

1. Introduction Text summarization is a rapidly growing and
challenging task in natural language processing
(NLP). It aims to produce a condensed version of a
document that retains the key ideas of the original
text, facilitating the comprehension of these ideas
(Mitra et al., 2000). ATS is particularly valuable
because manual text summarization is tedious and

In today’s era, the Internet has huge amounts of
data due to the rapid expansion of web-based electronic
documents. The proliferation of this vast volume
of data makes it complicated to collect pertinent
information efficiently. In view of the huge amount of
text documents, gathering and processing primary data

from various resources is a complex and exhaustive
task, often exceeding human capacity. This challenge
has motivated researchers to develop techniques for
automatic text summarization (ATS), which aim to
condense large volumes of text into concise summaries
while preserving meaning and context. Over the
past several decades, several information retrieval
techniques have been explored to address this problem.

time-consuming. In the NLP domain, summarization
also serves as an intermediary step to reduce text
size and complexity. Key application areas of text
summarization include text classification, question and
answer, legal document summarization, social media
text summarization, and headline/title creation.

Text summarization can be categorized by output
type into two main approaches (Gambhir & Gupta,
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2017): Extractive text summarization and abstractive
text summarization. Extractive text summarization is
the most widespread approach to text summarization.
It extracts important textual units, such as phrases,
words, and sentences, based on linguistic and
mathematical features to form a summary. On the
other hand, abstractive text summarization generates
summaries closer to human-written summaries by
creating semantic representations and producing new
sentences, rather than merely reordering existing ones.
Summaries generated by these methods are generally
grammatically correct. Therefore, these techniques are
not limited to simply picking and reordering sentences
from the original text.

Summarization can also be classified by input
type (single vs. multi-document) or purpose (generic,
domain-specific, or query-based) (Zajic et al., 2008).
Generic summarization captures broad themes and
addresses a wide community of users; domain-specific
summarization incorporates knowledge of specialized
fields, such as law or biomedicine, while query-based
summarization tailors the output to user needs.

Despite progress, ATS still faces significant
challenges. Key issues include encoding high-
level semantic structures, handling large input
dimensionality, managing out-of-vocabulary words,
and ensuring accurate part-of-speech tagging.
Conventional machine learning approaches often
struggle with these challenges due to their shallow
architecture and restricted capability for hierarchical
feature learning. Neural network-based methods
have improved semantic modeling, but they still face
limitations, including computational inefficiency,
noisy training data, and the omission of important
sentences due to score-based selection.

To overcome these limitations, this study
proposed an improved novel ensemble learning-
based ATS, called improved multilayer extreme
learning ~ machine—autoencoder  (MLELM-AE).
The multilayer architecture enhances the ability
to learn deep and abstract features, improving the
identification of salient information. In addition, the
proposed algorithm incorporates end-to-end training
using backpropagation, allowing iterative refinement
of hidden layers and better generalization compared
to conventional extreme learning machine (ELM)-
based approaches. The AE framework ensures efficient
reconstruction, enabling efficient dimensionality
reduction while retaining important information for
producing high-quality summaries.

The proposed ensemble framework integrates
multiple models, including the improved MLELM—-AE,
AE, variational AE (VAE), and sentence-bidirectional
encoder representations from transformers (SBERT). It
employs data transformation steps, such as clustering,
topic modeling, term frequency—inverse document

frequency (TF-IDF) analysis, and frequent term
selection to enhance text representation. Entity-focused
sentences are captured through topic modeling, while
a re-ranking mechanism ensures optimal sentence
selection for the final summary. Overall, the proposed
ensemble approach significantly advances ATS by
combining semantic entity extraction, robust feature
learning, and effective sentence re-evaluation.

The remainder of this paper is structured as
follows: Section 2 reviews existing works, Section 3
details the proposed methodology, Section 4 presents
results and discussion, and Section 5 concludes with
future scopes.

2. Related Works

The work by Toprak & Turan (2025) demonstrated
an automatic abstractive document summarization
framework based on transformers and sentence
grouping. The collected dataset was pre-processed and
then utilized to train the transformer model. Then, the
transformer model proficiently summarized the text.
This approach obtained a SimHash text similarity
of 93.2%, indicating a high effectiveness and low
complexity. However, this model suffered from
considerable information loss.

Khan et al. (2025) implemented a hybrid deep
learning-based next-generation text summarization for
psychological data. Text-to-text transfer transformer
(TS) and long short-term memory (LSTM) were
employed to perform advanced text summarization.
This approach achieved an accuracy, precision, and
recall of 74%, 72%, and 72%, respectively, indicating
its supremacy. However, the framework had high
computational complexity owing to the hybrid scheme.

Alotaibi & Nadeem (2025) introduced an Arabic
aspect-based sentiment analysis and abstractive
text summarization of traffic services using an
unsupervised-centric approach. A fine-tuned AraBART
algorithm was employed to perform abstractive text
summarization. This algorithm achieved 92.13%
precision and 92.07% recall, indicating its high
efficacy. However, the model struggled to handle the
text from various domains.

Onan & Alhumyani (2024a) propounded an
extractive text summarization framework using
fuzzy topic modeling and bidirectional encoder
representations from transformers (BERT). Here,
fuzzy logic was used to improve topic modeling,
thereby capturing a nuanced representation of
word-topic relationships. This algorithm obtained
recall-oriented understudy for gisting evaluation 1
(ROUGE-1) and ROUGE-2 scores of 45.3774 and
24.1808, respectively. It significantly provided high-
quality text summaries. However, the framework was
ineffective due to the lack of interpretability.
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In the work by Onan & Alhumyani (2024b), they
implemented a multi-element contextual hypergraph
extractive summarizer (MCHES) to perform extractive
text summarization. MCHES effectively constructed
a contextual hypergraph, showing semantic and
discourse hyperedges. The approach achieved an
ROUGE-1 score of 44.321 and an ROUGE-2 score
of 19.129, indicating its impressive performance in
extractive summarization. However, the framework
had a maximum risk of bias amplification.

Hassan et al. (2024) demonstrated an approach
of extractive text summarization using NLP with an
optimal deep learning (ETS-NLPODL) model. The
research analysis of various parameters indicated
that the ETS-NLPODL approach achieved excellent
performance compared to other models regarding
diverse performance measures.

Hernandez-Castaieda et al. (2023) designed
a fitness function based on genetic programming to
generate ATS. The experimental outcomes clearly
showed that the grouping of lexical and semantic
information (LDA+Doc2Vec+TF-IDF)  achieved
exceptional outcomes in identifying key ideas to form
a summary.

Dilawari et al. (2023) proposed a model for both
extractive and abstractive summarizations, named as
automatic feature-rich model architecture comprises
a hierarchical bidirectional LSTM. The results
demonstrated that the model outperformed existing
techniques, with a ROUGE score of 37.76%, high
generality, and high sapiential.

An improved English text summary algorithm
based on association semantic rules was proposed
in a previous study (Wan, 2018). The method mined
relative features among English sentences and phrases,
implemented keyword extraction in English abstracts,
and applied semantic relevance analysis with
association rules distinction, grounded in knowledge
theory. Semantic rules were further mined from
English teaching texts. The outcome of the replication
showed that the technique could accurately extract
summaries with improved convergence and output
accuracy. This demonstrates strong application value
for efficiently reading English texts and gathering
important information.

Zenkert et al. (2018) proposed the
multidimensional knowledge representation structure.
The fallouts of analytics using individual methods
for text mining, such as named person recognition,
sentiment analysis, and topic detection, were
integrated into a knowledge base as dimensions to
support knowledge exploration, vision, and computer-
aided written tasks. This framework supports cross-
dimensional exploration and provides a novel approach
for summarization and knowledge discovery.

Similarly, Prameswari et al. (2018) combined
sentiment analysis and summary generation, applying
their method to hotel reviews in Bali and Labuan
Bajo. Their model achieved a rating accuracy of 78%
with a Davies—Bouldin index of 0.071, demonstrating
potential benefits for the Indonesian tourism industry.

Jain et al. (2017) proposed a neural network-
based extractive summarization function, testing on
the Document Understanding Conferences (DUC)
2002 dataset. Their approach outperformed four online
summarizers in ROUGE evaluations, indicating the
importance of robust feature extraction for summary
generation. The scale and complexity of training
datasets and additional exact methods to convert
abstract summaries into extractive summaries will
further improve the model.

In clustering-based approaches, Pradip & Patil
(2016) developed a hierarchical sentence clustering
algorithm to address instability, complexity, and
sensitivity issues in traditional methods. Any type
of relational clustering algorithm may work with
an implemented hierarchical clustering algorithm.
The general text mining algorithm can also be used.
Experimental results demonstrate that hierarchical
clustering was useful and yielded improved results for
text documents.

Akteretal. (2017) presented a text summarization
method that extracts significant phrases from single or
multiple Bengali documents, which were prepared by
processes, such as tokenization or interrupt operations.
The word score was then determined using the TF-IDF
weighting, and the sentence value was calculated with
location. For sentence score calculation, the term
skeleton and cue were also considered. K-means
clustering was used to summarize many or a single
document in a final form. Their method reduced
redundancy and improved run-time complexity
compared to existing extractive approaches.

Jadhav et al. (2019) designed a bidirectional
recurrent neural network (RNN)-based encoder-
decoder model that identifies key phrases and generates
coherent summaries. Initially, key phrases were listed
and arranged in a consolidated report. Given the
measurable and semantic highlights of sentences,
the sense of the sentence was chosen. This shorter
representation was then passed through an encoder-
decoder template to produce a description of the entire
document. The projected model efficiently created
a concise and linguistically accurate synthesis by
recognizing the content and disclosing it in its terms.
The proposed methodology only selected related terms
and passed them to a bidirectional RNN to define the
central ideas of the article and to represent them.

The ATS problem consists of two main tasks:
Single-document and multi-document summarization.
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In the case of a single document, input and summarized
details are extracted from a specific document,
whereas for multiple documents, summaries are
generated based on a shared theme. A recent statistical
approach was proposed by Madhuri and Kumar (2019)
to perform extractive text summarization on single
documents. The method of extracting sentences was
presented, providing a brief overview of the input
text. Phrases were categorized by weight assignment.
Highly ranked phrases were then selected to form the
final summary, which can also be converted into audio
output.

Document review aims to condense the source
text into a short and succinct form while preserving
accuracy and general significance. Dave & Jaswal
(2015) proposed an abstractive summary approach
that generates compact and human-readable
summaries using WordNet ontology derived from
extractive summaries. The generated summaries were
grammatically correct and more coherent for human
readers.

Elbarougy et al. (2020) introduced an Arabic
text summarization method, a graphical system with
text expressed on its vertices. An improved PageRank
algorithm was applied with initial node scores and
multiple iterations to generate optimal summaries
while eliminating redundancies. Using the Essex
Arabic Summaries Corpus for evaluation, this method
outperformed TextRank and LexRank, achieving a
final F-measure of 67.98, which surpassed earlier
approaches.

Collecting textual information is a challenging
activity in biomedical text synthesis. Moradi et al.
(2020) proposed a method leveraging BERT-based
contextual embeddings to capture the semantic
information of biomedical texts. Their deep learning
model clustered sentences using BERT and selected
the most relevant ones for summary generation.
Evaluation with the ROUGE toolkit demonstrated
significant improvements in biomedical text synthesis,
outperforming other domain-independent approaches.

A multi-target optimization method has
contributed to ATS over the years. Sanchez-Gomezetal.
(2019) applied a multi-objective artificial bee colony
(MOABC) algorithm, incorporating parallelization
strategies. Comparative experiments on DUC datasets
showed that their asynchronous structure significantly
enhanced performance, achieving over 55 times
quicker with 64 threads and an efficiency of 86.72%,
outperforming traditional synchronous methods.

Qaroush et al. (2021) proposed automated
and extractive general Arabic single-document
summarizing techniques to construct comprehensive
summary details. The proposed extractive methods
used statistical and semantic features to evaluate
sentence value, diversity, and exposure. Two

summarizing techniques were also used to construct
a description and then exploited built characteristics,
such as score and machine learning supervision.
Performance of the proposed technique was tested
using the ROUGE metrics, yielding superior
results in terms of accuracy, retrieval, and F-score
compared to related works.Present graph-based
extractive summarization methods represent corpus
sentences as nodes, with edges depicting lexical
similarity between sentences (Van Lierde & Chow,
2019). However, such approaches cannot adequately
capture semantic similarities, since sentences may
convey related information using different words. To
address this, Van Lierde & Chow (2019) proposed
extracting semantical similarities based on topical
representations. They introduced a topic model to infer
the distribution of hierarchical, context-influenced
sentences. Since each concept establishes semantic
relationships across sentences by assigning degrees
of membership, the authors further proposed a fluid
hypergraph model, where nodes represent sentences
and fuzzy hyperedges. Sentence collections were
then extracted to produce comprehensive summaries
while simultaneously optimizing user-defined query
relevance, centrality within the hypergraph, and topic
coverage. To solve this optimization problem, they
developed an algorithm based on submodular function
theory. A thorough comparison with other graphic
summarizers demonstrated the superiority of their
strategy in the coverage of summaries.

Extractive multifocal approaches aim to
synthesize key material while reducing redundancy.
One promising avenue is multi-objective optimization,
which naturally fits the summarization problem
(Sanchez-Gomez et al., 2019). This method produces
a set of non-dominated solutions or Pareto sequences,
though ultimately only one summary is selected. To
address this, post-Pareto analyses were performed
using various methods, including hypervolume
maximization, minimum distance from all points,
minimum distance from an ideal point, and a consensus
solution. Experiments conducted on DUC datasets and
evaluated using ROUGE metrics revealed that the
consensus approach outperformed others, improving
ROUGE scores by 10.68-27.32%.

In another study, Alami et al. (2019) enhanced
ATS efficiency using unregulated deep neural networks
combined with a word embedding approach. First,
they built a word definition on word integration and
demonstrated that the representation of Word2Vec was
better than that of traditional bag-of-words (BOW).
Second, by combining Word2Vec and unmonitored
functional learning approaches, they offered
alternative models for incorporating information
from various sources. They revealed that uncontrolled
neural network models trained on the representation
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of Word2Vec were enhanced compared to those
trained on BOW models. Third, they described three
ensembles: (i) Majority voting between Word2Vec
and BOW, (ii) aggregation of BOW with unsupervised
neural network outputs, and (iii) a combined
ensemble of Word2Vec and unattended neural
networks. Results showed that ensemble techniques
enhanced ATS performance, with Word2Vec-based
ensembles consistently outperforming BOW-based
models. Comparative evaluations across two publicly
accessible datasets confirmed that Word2 Vec ensemble
methods yielded the best results, surpassing all studied
models in effectiveness.

Abstractive text summarization is a more
challenging task than extractive summarization, as it
requires generating paraphrased text that conveys the
entire meaning of the source. Nonetheless, it typically
yields more natural summaries with improved cohesion
between sentences. Adelia et al. (2019) demonstrated
that RNNs can effectively produce abstractive
summaries in both English and Chinese. In their study,
a bidirectional gated recurrent unit RNN architecture
was used to capture the effect of surrounding words
on generated summaries. Applying a similar method to
Bahasa Indonesia, they showed that the model could
generate summaries closely resembling human-written
abstracts, outperforming purely extractive approaches.
Their findings suggest that RNN-based abstractive
models can achieve strong comprehension of source
texts to support high-quality summary generation.

Building on this line of work, Yao et al. (2018)
proposed a dual-encoder sequence-to-sequence
attentional model for abstractive summarization.
Unlike previous research that relied on a single
encoder, their model incorporated both a primary
encoder, which performed coarse-grained encoding,
and a secondary encoder, which provided fine-grained
encoding based on raw input and previously generated
outputs. By combining both levels, the model reduced
redundancy and improved handling of long sequences.
The test outcomes of two complicated datasets (DUC
2004 and CNN Daily Mail) revealed that their hybrid
model of encoding outperformed existing methods.

Du & Huo (2020) focused on fuzzy logic rules,
multi-feature analysis, and genetic algorithms to
develop a new automated synthesis paradigm for news
texts. Since news articles often contain distinctive
elements, such as time, place, and characters, word
features were first extracted, and those surpassing a
threshold score were identified as keywords. A linear
combination of these characteristics revealed the
meaning of each sentence, and each feature evaluated
the genetic algorithms. Using fuzzy logic, the system
generated automated summaries. The simulation
results on the DUC 2002 dataset, evaluated with the
ROUGE tool, demonstrated that the proposed method

outperformed several baseline approaches, including
Microsoft Word, Systeml9, System2, System30,
single-document summarization—neural network with
a genetic algorithm, general context decoder, self-
organizing map, and support vector machine ranking.

Alzuhair & Al-Dhelaan (2019) proposed
combining multiple graph-based methods to enhance
the quality of extractive summary outcomes. Given the
widespread use of graph-based techniques in NLP, they
developed a hybrid approach that integrates two graph-
based techniques (four different weighting methods
and two graph methods). To merge the results, both
the arithmetic mean and harmonic mean were tested.
Experiments conducted on the DUC 2003 and DUC
2004 datasets, evaluated using the ROUGE toolkit,
and revealed that the harmonic mean outperformed
the arithmetic mean. Furthermore, the hybrid method
demonstrated significant improvements over baseline
models and several state-of-the-art approaches when
combined with weighting schemes.

Building on sequence-to-sequence frameworks,
Ding et al. (2020) sought to optimize traditional
sequence mapping and semantic representation for
abstractive summarization. Their proposed method
enhanced the model’s semantic comprehension
of source texts and improved the coherence of
generated summaries. The method was validated on
two benchmark datasets, large-scale Chinese short
text summarization (LCSTS) and SOGOU datasets,
where experimental results showed ROUGE score
improvements of 10-13% compared to existing
algorithms. These findings demonstrate that optimizing
semantic representation can substantially enhance both
the accuracy and readability of generated summaries.

Similarly, Liang et al. (2020) introduced
an abstractive summarization model tailored for
social media texts using a selective sequence-to-
sequence (i.e., Seq2Seq) framework. To improve
content filtering, a discerning gate was added after
the encoder to eliminate irrelevant or redundant
information. In addition, they combined inter-entropy
with enhancement learning to directly optimize
ROUGE scores. Evaluations on the LCSTS dataset
demonstrated that their model achieved F1-score gains
0f 2.6% for ROUGE-1, 2.1% for ROUGE-2, and 2.0%
for ROUGE-L compared with the baseline Seq2seq
model.

El-Kassas et al. (2020) introduced EdgeSumm,
a novel extractive graph-based architecture designed
to optimize ATS for single documents. The framework
relies on four proposed algorithms, with the first
constructing a novel text graph model (NTGM) from
the input document. The second and third algorithms
identify candidate sentences from the constructed
text graph, while the fourth finalizes the summary
selection. Unlike many existing methods, EdgeSumm
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is domain-independent and unsupervised, requiring no
training data. The model was evaluated on the standard
DUC 2001 and DUC 2002 datasets using the ROUGE
evaluation toolkit. Results showed that EdgeSumm
achieved the highest ROUGE scores on DUC 2001,
and on DUC 2002, it outperformed several state-of-
the-art ATS frameworks by margins of 1.2-4.7% in
ROUGE-1 and ROUGE-L. The proposed framework
also delivered highly competitive performance
on ROUGE-2 and ROUGE-SU4, confirming its
robustness and efficiency.

Automatic review summarization has emerged
as an effective approach to improving information
processing for travelers. However, many review texts
contain vague or non-sentimental content, limiting
the effectiveness of sentiment-based methods. To
address this, Tsai et al. (2020) proposed a systematic
framework that first identifies useful reviews through
a classifier and then categorizes sentences into six
hotel-related features. Subsequently, the polarity of
each sentence is evaluated for analytical summaries.
Experimental results demonstrated that the proposed
method outperformed other methods, producing more
accurate and informative summaries of hotel reviews.

Joshi et al. (2019) proposed SummCoder,
a novel extractive method for single-document
summarization. This framework is based on three
sentence-level analysis techniques: Sentence position,
content relevance, and sentence novelty. Content
relevance is computed using a deep AE network,
while novelty is measured through semantic similarity
between sentence embeddings in distributed space.
Sentence position is modeled using a hand-designed
weighting function that assigns higher significance
to earlier sentences, with adjustments based on
document length. Final summaries are generated by
ranking sentences according to a fused score from
these three metrics. To support evaluation, the authors
introduced the Tor Illegal Documents Summarization
(TIDSumm) dataset, specifically built to assist law
enforcement agencies in analyzing web documents
from the Tor network. Empirical outcomes showed
that SummCoder performed on par with or better than,
several state-of-the-art approaches across various
ROUGE metrics on DUC 2002, blog summarization
datasets, and TIDSumm.

Jindal & Kaur (2020) developed an unsupervised
approach to summarizing bug reports, aiming to
capture both overall content and specific software-
related details. Their method begins with automated
keyword extraction using TF-IDF, followed by
ranking of key sentences. To reduce redundancy, fluid
C-means clustering is applied with thresholding, and
a rule motor informed by domain knowledge selects
the most relevant sentences. Additional hierarchical
clustering is employed for re-ranking and improving

coherence. The proposed approach was evaluated
on the Apache bug report corpus (APBRC) and bug
report corpus (BRC) using metrics, such as precision,
recall, pyramid precision, and F-score. Experimental
results showed substantial improvements over
baseline methods, including BRC and logistic
regression with crowdsourcing attributes, as well as
existing unsupervised methods, such as Hurried and
Centroid. The APBRC evaluation reported 78.22%
precision, 82.18% recall, 80.10% F-score, and
81.66 pyramid precision, highlighting the method’s
strong performance in generating cohesive and
comprehensive summaries.

3. Methodology
3.1. Improved MLELM-AE

The improved MLELM-AE is a hybrid neural
network model that integrates the fast training ability
of ELMs with the deep feature learning capability
of AEs. Conventional ELMs typically employ only
a single hidden layer and compute output weights
analytically, which enables extremely fast training but
restricts their ability to capture complex patterns. To
address these issues, the proposed improved MLELM—
AE introduces a multilayer architecture structure as
a deep AE. This design enables the network to learn
hierarchical and abstract depictions of input data.

This approach is particularly designed for tasks,
such as ATS and dimensionality reduction, where
capturing deep semantic features is important. The
algorithm begins by defining the network architecture,
including the input layersize, output layersize (typically
matching the input in AEs), and the configuration
of hidden layers. Bias vectors and weight matrices
are set randomly for every hidden layer. During the
forward pass, input data are propagated through each
hidden layer using a non-linear activation function,
enabling the model to capture complex patterns and
relationships within the data. The output layer then
attempts to reconstruct the original input, consistent
with the fundamental nature of an AE.

In contrast to traditional ELMs that depend
exclusively on closed-form solutions to compute
output weights, the proposed model adopts an iterative
optimization approach. For a pre-defined number of
iterations, the model computes the reconstruction error
(the difference between the input and the reconstructed
output) and updates the weights using a specified
learning rate. This hybrid approach preserves the
computational efficiency of ELMs in the hidden layers
while enabling the model to adaptively fine-tune the
output layer weights. Compared to traditional ELM
or single-layer AEs, the proposed model demonstrates
improved convergence.


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/1J0S1.202510_9(5).0001

S. Upadhyay & H. K. Soni/Int. J. Systematic Innovation, 9(5), 1-13 (2025)

The innovation of the improved MLELM-AE
stems from its integration of the fast learning capacity
of ELMs with the deep feature extraction strength of
multilayer AE. This design leverages fixed random
weights in the hidden layers while allowing adaptive
updates in the output layer, thereby enabling deep
feature extraction at a minimal computational cost. By
employing reconstruction loss as the training objective,
the model is particularly well-suited for unsupervised
learning  applications. Compared with shallow
architectures, it demonstrates superior ability to capture
complex data representations, providing an efficient
balance among performance, training speed, and
architectural simplicity. The flow of data between hidden
layers is mathematically formulated in Eq. (1):

H, g(,) H, (1

where g, is the output weights, 7" is equivalent
to the input data X at the first layer of MLELM, f,_,
is the output weight matrix of the i hidden layer,
and i+1" layer weights are the outputs of MLELM.
Regularized least squares were used for output layer
weight calculation of MLELM.

The proposed improved MLELM-AE algorithm
introduces numerous key novelties over conventional
models, such as ELMs and AE. The main contributions
are outlined in Table 1.

3.2. Algorithm of the Improved MLELM-AE

Input:
e Training data: TRx
e Number of iterations: niterations
e [earning rate: Irate

Output:
e Improved MLELM-AE trained model: A

a. Initialization
1. Describe input dimensions:
e input size, hsizes, osize (sizes of input, hidden
layers, and output, respectively)

2.  Initialize weights and biases for each layer:
e For each layer k:

e (G[k] = random matrix of size (hsizes[k],
input_size ifk ==
else hsizes[k-1])

e h[k] = random matrix of size (hsizes[k], 1)

3.  Initialize output weights and biases:

e G_out=random matrix of size (osize, hsizes[-1])
e h_out = random matrix of size (osize, 1)

b. Train the network
For each iteration in range niterations:
1. Forward pass:

o Initialize activations = [input_data]
e For cach layer k:
e Compute:

Y = activation_function(G[k] * Y + h[k])
e AppendY to activations
e Compute final output:
output=G_out * Y +h_out

2. Calculate loss:
e Compute loss:
loss = mean((output - activations[0])"2)

3. Backward pass:
i. Compute output error and delta:
e oerror = output - activations[0]
e odelta = oerror
ii. Update output weights and biases:
e G out-=lrate * (odelta * activations[-1].T)
e h out -= lIrate * mean(odelta, axis=I,
keepdims=True)
iii. Compute hidden layer errors:
e Initialize herrors = [odelta]
e For each layer k in reverse:
° hidden_error = G[k+1].T * herrors[-1]
° hdelta = hidden_error * activations[k+1]
* (1 - activations[k+1])

e Append hdelta to hdeltas and hidden_error
to herrors

iv. Update weights and biases for hidden layers:
e For each layer k:
° G[k]-=Irate * (hdeltas[k] * activations[k].T)
° h[k] -= Irate * mean(hdeltas[k], axis=I,
keepdims=True)

c. Return the trained model
° Return the trained model A (Improved
MLELM-AE)

3.3. Ensemble Learning Framework for Text
Summarization

In the proposed ensemble learning framework,
the enhancement of sentence representations and the
improvement of output summaries’ quality are achieved
using an ensemble of deep learning models: The
improved MLELM-AE, SBERT, AE, and VAE (Fig. 1).
From the output of these models, cosine similarity
scores are computed, followed by a voting-based fusion
strategy, re-ranking, and optimal sentence selection.

In this approach, Word2Vec and SBERT
semantic embedding models are first used to convert
the input document into dense vector representations,
effectively capturing the contextual relationships
within the text. These embeddings are then passed
through four parallel encoding modules: SBERT, AE,
VAE, and the improved MLELM-AE. Each encoder
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Table 1. Novelty of the proposed improved MLELM-AE algorithm

Feature Traditional ELM AE Improved MLELM-AE
Hidden layers | Single Multiple Multiple

Training Non-iterative (closed form) Backpropagation ELM with backpropagation
Speed Fast Moderate Fast and adaptive

Output update | Only output layer All layers Output and hidden layers

Loss function | Classification loss

Reconstruction loss | Reconstruction loss (MSE)

Adaptability | Low High

High

Learning Randomized and no tuning

Gradient-based

Hybrid: Random initialization and gradient tuning

Abbreviations: AE: Autoencoder; ELM: Extreme learning machine; MLELM: Multilayer ELM; MSE: Mean squared error.

Output
(sentence
selection)

Calculation
of the cosine
similarity of
all
techniques
separately

Fig. 1. Ensemble learning framework for text summarization

extracts sentence-level features independently,
focusing on different aspects of sentence semantics
and information compression. SBERT retains rich
contextual information and deep contextual features,
while AE and VAE reduce dimensionality and gather
latent semantic structures. The improved MLELM—-AE
leverages the computational efficiency of extreme
learning alongside the representational strength of
deep learning models to enhance feature abstraction.
Once sentence-level embeddings are formed, cosine
similarity is computed separately for each model to
assess sentence significance. The similarity scores are
then integrated using a data fusion method, allowing
the integration of diverse model perspectives. Based
on the fused scores, sentences are re-ranked to

prioritize informative and non-redundant content.
Finally, the highest-ranked sentences are selected to
form the extractive summary. This ensemble-based
framework improves summarization effectiveness,
semantic quality, and robustness by integrating the
diverse capabilities of various encoding techniques.

4. Results and Discussion
4.1. Software Requirements

The proposed framework was implemented
in PYTHON, a widely used general-purpose and
high-level programming language that is primarily
developed for emphasizing code readability. The
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syntax of PYTHON permits developers to define
concepts in fewer lines of code. Similarly, PYTHON
effectively incorporates the system and works faster.
PYTHON is used in numerous applications, including
artificial intelligence, scientific computing, and
automation. In addition, for many common tasks, the
comprehensive standard library of PYTHON provides
modules and functions.

4.2. Hardware Requirements

The hardware necessities for the proposed model
and framework are as follows:
° Processor: Intel Core 15/i7
Central processing unit speed: 3.20 GHz
Operating system: Windows 10
System type: 64-bit
RAM: 4 GB

4.3. Dataset Description

The proposed improved MLELM-AE model
was evaluated using the DUC 2002 dataset, which
is publicly available (https://ieee-dataport.org/
documents/sentence-embeddings-document-sets-duc-
2002-summarization-task). The DUC 2002 dataset
consists of 1,358 text documents. For experimentation,
the dataset was divided into training, validation, and
testing subsets. Specifically, 70% of the documents
(950) were used for training, 10% (135) for validation,
and the remaining 20% (271) for testing. The detailed
hyperparameters employed in the proposed framework
are presented in Table 2.

4.4. Performance Evaluation of the Proposed
Improved MLELM-AE model

The performance of the proposed improved
MLELM-AE model was compared with existing
techniques, including AE, SBERT, and VAE, to
demonstrate its reliability. The evaluation was
conducted using standard metrics, such as accuracy,
precision, recall, F-measure, sensitivity,and ROUGE-1
score. The proposed improved MLELM—AE achieved
superior results, with accuracy, precision, recall,
F-measure, sensitivity, and ROUGE-1 scores of
96.32%, 97.16%, 96.01%, 97.24%, 97.01%, and
0.865145, respectively. In contrast, the existing
techniques attained comparatively lower average
performance across these metrics, as summarized
in Table 3. These results confirm that the proposed
improved MLELM-AE  model significantly
outperforms the baseline models in extractive text
summarization.

Specifically, the highest accuracy of 96.32%
was achieved by the proposed improved MLELM—-AE

Table 2. Detailed hyperparameters of the models

Specifications Proposed |AE VAE |SBERT
improved
MELM-AE
Epoch 500 500 |500 |500
Activation function |[ReLU ReLU |ReLU [ReLU
Weight Hyperfan-In | Xavier | Xavier | Xavier
initialization
Learning rate 0.0001 0.008 |0.017 [0.124
Batch size 100 80 60 20
Optimizer Adam Adam |Adam |Adam
Loss function MSE MSE |MSE |MSE
Dropout rate% 0.2 0.5 0.4 0.3

Abbreviations: AE: Autoencoder; MLELM: Multilayer
extreme learning machine; MSE: Mean squared

error; ReLU: Rectified linear unit; SBERT: Sentence
bidirectional encoder representations from transformers;
VAE: Variational autoencoder.

model, significantly outperforming AE (91.41%),
SBERT (90.87%), and VAE (91.48%), thereby
confirming its robust ability to correctly identify
relevant instances. In terms of precision (97.16%) and
F-measure (97.24%), the proposed model exhibited
exceptional performance, indicating its ability to
generate highly accurate summaries or predictions
with minimal false positives and a robust balance
between precision and recall. Similarly, the high
recall score (96.01%) highlights its effectiveness in
capturing the majority of relevant outputs, ensuring
comprehensive coverage of the target content. In
contrast, AE, SBERT, and VAE recorded lower recall
values of 91.03%, 91.11%, and 92.49%, respectively,
highlighting their limitations in capturing all relevant
elements.

The proposed improved MLELM—AE model also
attained an outstanding ROUGE-1 score of 0.865145,
a significant measure in text summarization that
assesses unigram overlap between system-generated
and reference summaries. This outperformed AE
(0.819125), SBERT (0.805981), and VAE (0.816013),
confirming that the summaries produced by the
proposed model are more semantically and lexically
aligned with human-authored summaries.

Moreover, the execution time of the improved
MLELM-AE (50,015 ms) was shorter than that of AE
(56,236 ms), SBERT (61,008 ms), and VAE (63,018
ms), demonstrating efficiency without compromising
performance (Fig. 2). Finally, the model achieved a
low error rate (0.010766), reflecting its accuracy in
fitting training data; nonetheless, further assessment
on unseen datasets is required to meticulously validate
its generalization capability.

Overall, the experimental results indicate that
the proposed improved MLELM—-AE model not only
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Table 3. Comparative assessment of the models

Model Accuracy % | Precision % | Recall % | F-Measure % | ROUGE-1 | Time (ms) | Error
Proposed improved 96.32 97.16 96.01 97.24 0.905145 50,015 | 0.010766
MLELM-AE

AE 91.41 93.21 91.03 93.12 0.819125 56,236 | 0.031064
SBERT 90.87 92.47 91.11 93.52 0.805981 61,008 | 0.066596
VAE 91.48 93.52 92.49 94.01 0.816013 63,018 | 0.092872

Abbreviations: AE: Autoencoder; MLELM: Multilayer extreme learning machine; ROUGE-1: Recall-oriented understudy for
gisting evaluation 1; SBERT: Sentence bidirectional encoder representations from transformers; VAE: Variational autoencoder.

Table 4. Comparative analysis with previously described frameworks

References Techniques ROUGE-1 score
Proposed ensemble framework in the present study | AE, SBERT, VAE, and improved MLELM—-AE 0.865145
Hernandez-Castaiieda et al. (2022) GA 0.414000
Hernandez-Castaieda et al. (2020) GA, LDA, and TF-IDF 0.486810

Abbreviations: AE: Autoencoder; GA: Genetic algorithm; LDA: Latent Dirichlet allocation; MLELM: Multilayer extreme
learning machine; ROUGE-1: Recall-Oriented Understudy for Gisting Evaluation 1; TF-IDF: Term frequency—inverse

document frequency.
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MLELM-AE
0.1
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0.06
-
2 o.0s
w
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0.01
., M
Proposed AE SBERT VAE
improved

MLELM-AE

Fig. 2. Execution time (A) and error (B) of the models
Abbreviations: AE: Autoencoder; MLELM: Multilayer
extreme learning machine; SBERT: Sentence
bidirectional encoder representations from
transformers; VAE: Variational autoencoder

attains state-of-the-art accuracy and performance
metrics but also offers computational proficiency,
making it a promising approach for real-world
applications in text summarization and related NLP
tasks.

10

ROUGE-1score

0.9
08
0.7
0.6
05
04
03
0.2
01

0

Proposed improved GA
MLELM-AE

GA, LDA, and TF-IDF

Fig. 3. Comparative analysis of the proposed
ensemble framework and previously described models
Abbreviations: AE: Autoencoder; GA: Genetic
algorithm; LDA: Latent Dirichlet allocation;
MLELM: Multilayer extreme learning machine;
ROUGE-1: Recall-Oriented Understudy for Gisting
Evaluation 1; TF-IDF: Term frequency—inverse
document frequency

4.5. Comparative Analysis of the Proposed
Ensemble Framework

A comparative analysis of the proposed
ensemble framework and previously described
frameworks (Hernandez-Castaiieda et al.,, 2020;
Hernandez-Castaneda et al., 2022) was conducted to
further validate the model’s reliability. The results
are summarized in Table 4 and Fig. 3. The proposed
ensemble framework achieved a notably high
ROUGE-1 score of 0.865145, primarily due to the
incorporation of the improved MLELM—-AE model.
In contrast, the existing genetic algorithm approach
achieved a considerably lower ROUGE-1 score of
0.414 on the same DUC 2002 dataset. Similarly, the
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model based on a genetic algorithm, latent Dirichlet
allocation, and TF-IDF techniques attained a lower
ROUGE-1 score 0f 0.48681, which can be attributed to
their computational complexity. These findings clearly
demonstrate that the proposed ensemble framework
outperforms traditional approaches in performing ATS.

5. Conclusion

ATS is a widely explored research area in the NLP
community, as it enables the generation of concise and
informative summaries from large volumes of text. This
paper presents an improved ensemble learning-based
ATS framework that incorporates the AE, SBERT,
VAE, and improved MLELM—-AE. The DUC 2002
dataset was employed for training and evaluation. The
research methodology involves several steps, including
pre-processing, slang identification and filtering, part-
of-speech tagging, entity extraction, vectorization,
ensemble modeling, similarity evaluation, re-ranking,
and optimal sentence selection. Experimental results
demonstrate that the proposed improved MLELM—-AE
achieved high accuracy (96.32%), precision (97.16%),
and recall (96.01%). On the other hand, the proposed
ensemble framework achieved a high ROUGE-1
score of 0.865145, significantly outperforming
existing models. These findings clearly validate the
effectiveness of the proposed approaches in delivering
improved ATS performance.
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Abstract

The importance of military catering in military organizations cannot be overlooked, as it not only impacts the health
and physical fitness of service members but also directly affects combat readiness and morale. This study focuses on
a northern air force base, using the Parasuraman-Zeithaml-Berry service quality (SERVQUAL) model’s Gap 1 and
Gap 5 as its framework. The aim is to investigate the perception gaps in catering service quality between food service
providers and customer. An importance-performance analysis matrix is employed to further analyze the findings. The
analysis reveals that, regarding “catering service quality,” food service providers who are actively serving without
formal food service certification, and those with high school or college education, tend to place more emphasis
on tangibility, reliability, empathy, and responsiveness. For service quality expectations, customers who possess a
college education and have obtained a food service certification show higher expectations in tangibility and reliability
dimensions. Younger customer, aged 18-25, who are uncertified and less experienced, report greater satisfaction with
the catering service’s reliability, responsiveness, and assurance dimensions after their experience with the base’s
services. Regarding the perception difference in Gap 1 of the SERVQUAL model, the study suggests that services
should prioritize user experience and ensure transparency by publicizing findings from meal review meetings.
Feedback can be gathered through a satisfaction mailbox to address and efficiently amend any service deficiencies.
For Gap 5 in terms of experience, customers show particular concern for food safety measures and overall service
quality, indicating that these areas should be maintained or enhanced. Regular training is recommended to improve
the knowledge and effectiveness of food service providers in these critical aspects.

Keywords: Group Catering, Importance-Performance Analysis Matrix, Service Quality Model, User Satisfaction

1. Introduction investigate perceived differences in service quality
during meal times and aiming to minimize latent risks

Military catering services not only fulfill basic D ) i
in military catering services.

nutritional needs but also play a critical role in

supporting military operations and assurance readiness. The objectives of this research are threefold: to
Conducting academic research on the service quality examine the perception gap in service quality between
of military catering can facilitate management and “food service providers” and the “customer” (Gap 1);
operational optimization, thus enhancing overall to explore the perception gap between “customer’
combat effectiveness and the well-being of military expectations” and their “actual experiences” with
personnel. This study is based on the service quality service quality in Air Force catering services (Gap 5);
model (SERVQUAL) and its scale proposed by and to propose actionable improvement strategies
Parasuraman et al. (1988). It targets “food service for both gaps. The findings of this study are intended
providers” and “customer” at an Air Force base to serve as a strategic reference for military units in
in northern Taiwan, distributing questionnaires to enhancing catering service quality in the future.
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2. Literature Review
2.1. Group Catering

Morgan (2004) defines group catering as a
systematic approach to meal management that enables
coordinated food service operations to produce meals
that maximize customer satisfaction while ensuring
reasonable profitability for the catering organization.
Examples include self-service buffet arrangements,
which minimize labor requirements and provide large
quantities of dishes within a short time to satisfy the
dining needs of many people.

2.2. User Satisfaction

Customer satisfaction, also known as “CS,” refers
to the alignment of a customer’s expectations with
their perception of having those needs met. Cardozo
(1965) suggests that customer satisfaction increases the
likelihood of repeat purchases and can further influence the
willingness to buy other products. Scholars Czepiel et al.
(1974) argue that the degree of customer satisfaction can
be seen as an overall evaluative response within the service
process, representing a composite of subjective reactions
to various product attributes (Oliver, 1981). Furthermore,
Rosenzweig and Singh (1991) emphasize that “customer
satisfaction” should be measured individually across
the performance of each attribute of a product, with
these individual scores aggregated to produce an overall
satisfaction measure. In summary, both customer
satisfaction and overall satisfaction vary depending on the
industry and the specific research subjects.

2.3. Service Quality Model and Service Quality

The SERVQUAL defines service quality based
on the customer’s experience throughout the service
process. Wyckoff (1984) suggests that service quality
is achieved by meeting the immediate needs of the
customer, a perspective closely tied to the existing
brand image (Sasser, Olsen, & Wyckoff, 1978).
In contrast, Gronroos (1982) posits that service
quality is determined by comparing the consumer’s
“expectations” with their “actual experiences.”
Lehtinen and Lehtinen (1982) further conceptualize
service quality across three dimensions, interaction,
tangibility, and communality, arguing that service
quality should be evaluated from the customer’s
perspective. According to their view, the quality
valued by customers is derived from both the service
process and the outcome.

The SERVQUAL utilized in this study is based
on the SERVQUAL scale, developed by the scholars in
1988, for measuring service quality. A brief overview
is provided below:
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(1)  Tangibility
In the service process, tangible aspects emphasize
the actual service experience, encompassing all
physical elements or sensations encountered
during dining. This includes the environment,
equipment, facilities, staff, decor, scent, hygiene,
and even the attitude and demeanor of personnel in
delivering service to customers (Kazarian, 1983).
Reliability
Reliability reflects the customer’s expectation
beyond simply satisfying hunger; it includes the
desire for dependable food, service, facilities,
environment, safety, hygiene, and everything
pertinent to the customer’s dining experience.
Assurance
Assurance complements tangibility, signifying
the politeness and respect service staff
demonstrate toward customers while providing
food or services. It builds trust and confidence
in the service staff’s overall performance, thus
contributing to customer satisfaction.
Responsiveness
Unforeseen incidents and even disasters are
unpredictable. Through training, service staff
can enhance their responsiveness and learn to
appropriately assist customers when problems
or mishandlings arise. Effective remediation can
even encourage customer loyalty and increase
the likelihood of repeat visits.
(v) Empathy
According to Maslow’s hierarchy (Maslow,
1943) of needs, the need for esteem is reflected
here, where customers seek respectful treatment
from service staff. Empathy focuses on delivering
personalized attention and the most suitable
service, ensuring a satisfying dining experience
for customers (Maslow, 1943).

(i)

(1i1)

(iv)

In 1985, Parasuraman et al. at Cambridge
University developed the SERVQUAL. This model
emphasizes the core idea that “the customer is
the determinant of service quality.” Within this
service quality framework, there are five gaps, each
highlighting critical areas that must be addressed to
ensure customer satisfaction with the service. The
model suggests that bridging these five service quality
gaps is essential to achieving customer satisfaction

(Fig. 1).

3. Research Methodology
3.1. Data Collection and Analysis Method

This study adopts the SERVQUAL as its research
methodology and utilizes the SERVQUAL scale to
develop a service quality satisfaction questionnaire.
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Fig. 1. Service quality model (SERVQUAL)
Source: Blackett (1988); Parasuraman et al. (1985)

The questionnaire targets “food service providers” and
“customer” at an Air Force base in northern Taiwan.
The study focuses on Gaps 1 and 5 of the SERVQUAL
service quality model as the basis for questionnaire
items, and the design incorporates the five dimensions
from the revised SERVQUAL scale.

“Food service providers” refers to those
responsible for menu design, calculating the number
of diners, procuring ingredients, and organizing and
preparing meals within the base. These personnel
may include externally hired chefs or in-house mess
staff. “Customer” includes both military and civilian
personnel at the base who utilize group catering
services. In this study, the term refers specifically to
catering service managers and operators, including
those with responsibilities for planning, oversight, and
execution.

A single structured questionnaire was employed
in this study, comprising three sections: the first section
collected respondents’ demographic information;
the second section assessed the service quality of
institutional catering services; and the third section
evaluated overall user satisfaction with the group meals.
All three sections adopted consistent item designs and
utilized a five-point Likert scale for measurement,
thereby ensuring comparability across constructs. This
design allowed the researchers to derive both Gap 1
and Gap 5 using a single questionnaire instrument.

3.2. Measurement Tools

The research framework is structured as follows:

° Gap 1: The difference between “catering
managers’ perception of customer’ expectations”
and “customer’ expectations of catering service
quality”

° Gap 5: The difference between “customer’
expectations of catering service quality” and
“customer’ experience with catering service
quality” (Fig. 2).
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Catering managers
(Understanding of
User Expectation)

Gap 1: The gap between users’
expectations and
managers’ understanding

Real users
(Expectation)

Gap 2: The gap between users’
expectations and their
actual experiences

Real users
(Perceived service)

Catering managers
(Service delivered)

User satisfaction

Fig. 2. Research framework diagram

4. Data Analysis and Results

A total of 460 valid questionnaires were collected
in this study, distributed among “food service providers”
and “customer.” The detailed analysis is as follows:

For the food service provider’s dimension,
170 valid questionnaires were collected. Among the
respondents, 52% were male and 48% female. Most
respondents were non-military staff (39%), followed
by volunteer service members (30%), with active
duty and reserve duty each accounting for 11%, and
conscripts at 9%. In addition, 61% were military
personnel, while 39% were in-house contracted staff.

In the customer dimension, 290 valid
questionnaires were obtained. Demographic analysis
showed a majority of male respondents (65%)
compared to female respondents (35%). The majority
were reserve duty members (68%), followed by
conscripts (16%), volunteer service members (10%),
active duty (4%), and non-military staff (2%).

4.1. Reliability and Validity Analysis

For the formal questionnaire, the Cronbach’s
alpha values were as follows: 0.94 for “food service
providers,” 0.95 for “customer’ expectations,” and
0.96 for “customer’ actual experiences,” indicating a
high level of reliability. Regarding validity, the Kaiser-
Meyer-Olkin (KMO) and Bartlett’s test of sphericity for
the six dimensions—tangibility, reliability, assurance,
responsiveness, empathy, and overall satisfaction—
were 0.83,0.81,0.74, 0.80, 0.64, and 0.84, respectively.
Although the KMO for the empathy dimension was
0.64 (slightly below the 0.7 threshold), it was within
the acceptable range and therefore retained. All other
dimensions had KMO values above 0.7, indicating
good validity of the questionnaire. All Bartlett’s tests
of sphericity were statistically significant at p<0.001,
confirming the suitability of the data for factor analysis.

4.2. Reliability and Validity Analysis
4.2.1. Reliability Analysis

After pilot testing and item screening, the internal
consistency of each questionnaire was examined.
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The overall Cronbach’s alpha coefficients were as

follows: 0.94 for the “institutional catering staff” scale,

0.95 for the “customer’ expectations” scale, and 0.96

for the “customer’ perceived experience” scale.

(1) Reliability of the institutional catering staff scale:
Tangibles (6 items): Cronbach’s o = 0.82
Reliability (6 items): Cronbach’s oo = 0.82
Assurance (4 items): Cronbach’s o= 0.77
Responsiveness (5 items): Cronbach’s oo = 0.85
Empathy (3 items): Cronbach’s o = 0.65
Opverall satisfaction (5 items): Cronbach’s .= 0.85.

Although the alpha coefficient for the “Empathy”
dimension was slightly below the commonly accepted
threshold of 0.70, it was retained as it remains within
the marginally acceptable range. All other dimensions
showed acceptable reliability, indicating that the
questionnaire demonstrates strong internal consistency.
(il)) Reliability of the customer’ expectations scale:

Tangibles (6 items): Cronbach’s oo = 0.89

Reliability (6 items): Cronbach’s oo = 0.93

Assurance (4 items): Cronbach’s o = 0.90

Responsiveness (5 items): Cronbach’s oo = 0.86

Empathy (3 items): Cronbach’s o = 0.86

Overall satisfaction (5 items): Cronbach’s o0 = 0.89

All dimensions achieved alpha values exceeding
0.70, indicating a high degree of internal reliability.
(iii) Reliability of the customer’ perceived experience

scale:

Tangibles (6 items): Cronbach’s oo = 0.92

Reliability (6 items): Cronbach’s oo = 0.94

Assurance (4 items): Cronbach’s o =0.90

Responsiveness (5 items): Cronbach’s o. = 0.92

Empathy (3 items): Cronbach’s a2 = 0.85

Overall satisfaction (5 items): Cronbach’s o0 = 0.92

All dimensions yielded Cronbach’s alpha
values above the 0.70 threshold, confirming the
questionnaire’s reliability.

4.2.2. Factor Analysis

This section presents the KMO values and
Bartlett’s test of sphericity results for each dimension.
(1)  Factor analysis of the institutional catering staff

scale:

Tangibles (6 items): KMO = 0.83

Reliability (6 items): KMO = 0.81

Assurance (4 items): KMO = 0.74

Responsiveness (5 items): KMO = 0.80

Empathy (3 items): KMO = 0.64

Overall satisfaction (5 items): KMO = (0.84

Although the KMO value for the “Empathy”
dimension was slightly below the 0.70 threshold, it was
considered marginally acceptable and thus retained.
All other dimensions reported KMO values above
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0.70, indicating sampling adequacy and supporting the
suitability of the data for factor analysis.

4.3. Correlation Analysis

In this study, the p-value between customer’
expectations and actual experiences was 0.000 for
all dimensions, with Pearson correlation coefficients
all below 0.01, indicating a moderate positive
correlation across the dimensions. This result confirms
a correlation between the expectations and experiences
of customer. It substantiates the hypothesis that a
service gap exists between food service, users’ service
quality, and customer’ expectations, as well as a gap
between customer’ expectations of catering service
quality and their satisfaction after the experience.

4.4. Importance-Performance Analysis (IPA) Matrix

To further understand the differences between
the two gaps, this study employs the IPA matrix as an
analytical tool (Martilla & James, 1977).

Gap 1: The gap between “catering staft”’s
perception of customer’ expectations” and “customer’
expectations of catering service quality” (Fig. 3).

(i) Quadrant I: Keep up the good work (high
expectation and high satisfaction).

e Tangibility:

Item 2: Food service provider’s attire is clean

and orderly.

Item 3: Dining environment and hygiene quality

are good.

Item 4: Provided meals adhere to refrigeration

at 7°C and freezing at —18°C, with measures to

prevent cross-contamination risks.

Item 5: Hot dishes meet the standard core

temperature of above 60°C.

Item 8: Meals are provided on time.

Fig. 3. Analysis matrix for “Gap 1”
Abbreviations: ASS: Assurance; EMP: Empathy;
REL: Reliability; RES: Responsiveness; SAT: Overall
satisfaction; TAN: Tangibility. Source: Compiled by
this study


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

(i)

(1i1)

(iv)

DOI: 10.6977/1J0S1.202510_9(5).0002

Z.R. Zhang & Y.W. Chan/Int. J. Systematic Innovation, 9(5), 14-22 (2025)

e Reliability:

Item 2: food service providers have obtained
relevant food service certifications.

Item 3: Adequate preventive measures are in
place under pandemic conditions, such as weekly
disinfection and environmental sanitation per
meal during outbreaks.

Item 4: Catering following the nutritional balance
inaccordance with the base mission requirements.
Item 5: The food is fresh.

Item 6: Cleanliness of food containers and
ingredients is well-maintained.

e Assurance:
Item 2: Reliable services are provided.
Item 4: Food is used within its expiration date.

e Empathy:
Item 6: Clear and accessible complaint
channels for catering services.

Quadrant II: Overly effortful (low expectation
and high satisfaction).

Overall Satisfaction:

Item 3: Overall food portion is adequate.

Item 4: Satisfaction with the overall taste of
food.

Item 5: Good variety in food selection.

Quadrant III: Low-priority improvement (low
expectation and low satisfaction).
Responsiveness:

Item 1: Food service providers do not ignore
issues due to busyness.

Item 2: Questions raised by users are answered
accurately.

Item 5: Food delivery personnel are quick, quiet,
and precise.

Item 6: Quality service is provided on the first
attempt.

Overall satisfaction:

Item 1: Overall food quality is good.

Item 2: Overall dining environment hygiene is
satisfactory.

Quadrant I'V: Concentrate here (high expectation
and low satisfaction).

Tangibility:

Item 6: Food containers are structurally sound
without cracks or damage.

Reliability:

Item 7: Effective oversight of daily potential
food safety incidents.

Assurance:

Item 1: Actual dishes served are consistent with
the menu.

Item 5: Food service providers prioritize users’
rights in food service.

e Responsiveness:
Item 4: Issues raised are actively addressed by
the catering unit.

o Empathy:
Item 3: Routine review of catering errors.
Item 5: The catering unit shows proactive
concern for users.

Gap 5: The difference between “customer’
expectations of catering service quality” and
“customer’ experience with catering service quality”
(Fig. 4).

(i) Quadrant I: Keep up the good work (high
expectation and high satisfaction).

e Tangibility:

Item 2: food service provider’s attire is clean and

orderly.

Item 4: Meals provided adhere to refrigeration

standards of 7°C and freezing standards of —18°C,

with measures to prevent cross-contamination.

Item 5: Hot dishes maintain a core temperature

standard of above 60°C.

e Reliability:

Item 2: food service providers have obtained

relevant food service certifications.

Item 3: Adequate preventive measures, such as

weekly disinfection of the dining area and daily

sanitation during outbreaks.

Item 4: Meals are nutritionally balanced

according to base mission requirements.

Item 5: The meal is fresh.

Item 4: Cleanliness of food containers and

ingredients is well-maintained.

e Assurance:
Item 4: Food is used within its expiration date.

e Empathy:
Item 3: Routine review of catering errors.

Fig. 4. Gap 5 analysis matrix
Abbreviations: ASS: Assurance; EMP: Empathy;
REL: Reliability; RES: Responsiveness; SAT: Overall
satisfaction; TAN: Tangibility. Data Source: Compiled
by this study
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Item 5: The catering unit shows proactive
concern for users.
(i1)) Quadrant II: Overly effortful (low expectation
and high satisfaction).
o Tangibility:
Item 3: Dining environment and hygiene quality
are good.
Item 6: Food containers are structurally sound
without cracks or damage.

e Reliability:
Item 7: Daily food safety incidents are managed
accurately.

e Assurance:

Item 1: Dishes served are consistent with the
menu.

Item 2: The service provided is reliable.

Item 5: Food service providers prioritize users’
rights in service.

e Responsiveness:
Item 4: Issues raised by users are promptly
addressed.

e Empathy:
Item 6: Clear and accessible complaint channels
for catering services.
(iii)) Quadrant III: Low-priority improvement (low
expectation and low satisfaction).
e  Responsiveness:
Item 1: Food service providers do not ignore
issues due to busyness.
Item 2: Questions raised by users are accurately
answered.
Item 5: Food delivery personnel are quick, quiet,
and precise.
Item 6: Quality service is provided on the first
attempt.

° Overall satisfaction:
Item 1: Overall food quality is good.
Item 2: Overall dining environment hygiene is
satisfactory.
Item 4: Satisfaction with the overall taste of
food.

(iv) Quadrant I'V: Concentrate here (high expectation
and low satisfaction).

e Overall satisfaction:

Item 3: Adequate portion sizes for meals.

Item 5: Good variety in food selection.

These areas in Quadrant IV should be prioritized
for review and improvement to better align with user
expectations.

In addition, it is recommended that future
improvements incorporate intelligent menu design
systems that leverage big data analytics to identify the
preferences of customer. Such systems can provide
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personalized, seasonal, and nutritionally balanced
meal options. Furthermore, the application of modern
cooking techniques, such as sous vide, and the adoption
of energy-efficient smart kitchen equipment may
enhance both meal quality and operational efficiency.
From a management perspective, it is advisable
to implement a participatory service improvement
mechanism, such as regularly organizing user forums
or conducting anonymous feedback surveys, to
enhance user engagement. Menu planning should
incorporate local culinary characteristics and seasonal
ingredients to promote dietary diversity and health
orientation. Moreover, offering customized options
for special dietary needs—such as low-carbohydrate,
plant-based, or gluten-free meals—may further
improve overall dining satisfaction and user loyalty.

5. Conclusion and Recommendations

This chapter presents the findings in Section 1,
followed by practical recommendations for military
units in Section 2.

5.1. Research Findings

For the differences in service quality perception
by hierarchical level, the study found significant
differences in the perceived quality of catering
services, specifically in the SERVQUAL dimension
of tangibility, based on the hierarchical level of
food service providers. Higher-ranking personnel
demonstrated a stronger focus on tangible aspects,
including food, service, facilities, safety, and hygiene.
This suggests that military personnel are more attuned
to and value tangible service quality compared to
in-house contracted staff within the northern air force
base. Specifically, “military personnel > in-house
contracted staff” highlights that military personnel
are more aware and concerned about the tangible
aspects of catering service quality than their civilian
counterparts.

In terms of the impact of certification on the
perception of service quality reliability, significant
differences were observed in the SERVQUAL
reliability dimension based on whether the food service
providers held food service certifications. Personnel
without certification showed a greater concern for
reliable, trustworthy services, implying a perception
gap between certified and uncertified staff regarding
service reliability. Specifically, “uncertified > certified”
highlights that uncertified food service providers place
more importance on reliability compared to certified
personnel at the base.

Regarding the educational background,
perceived responsiveness, and empathy, education
level also led to significant differences in perceptions
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of the SERVQUAL dimensions of responsiveness and
empathy. For empathy, “high school > university (and
above)” indicates that high school-level personnel
are more attentive to empathetic service, while for
responsiveness, “university (and above) > high school”
and “high school > junior high (and below)” suggest
that personnel with high school or higher education
levels prioritize responsive and empathetic services.

In summary, significant differences were
observed across hierarchical level, certification status,
and education level. In addition, other demographic
factors such as gender, age, years of service, and
military duty type were found to be non-significant in
this analysis.

In the analysis of differences in expectations
for catering quality in SERVQUAL dimensions
among customer based on demographic variables, the
analysis revealed significant differences based on food
service certification status. Independent sample #-tests
indicated that users with certifications placed higher
importance on tangible aspects of catering service
quality—such as food, service, equipment, safety, and
hygiene—than those without certifications.

In addition, educational background also
significantly affected expectations in the SERVQUAL
tangibility dimension. Users with a university-level
education or higher placed greater emphasis on tangible
aspects of catering quality than those with a high
school education or below, indicating a perceptual gap
based on educational level. In summary, certification
status and education level were significant factors,
while gender, age, hierarchical level, military duty, and
years of service were not.

For the differences in actual experiences of
catering quality in SERVQUAL dimensions among
customer, the analysis of demographic factors
reported significant differences in the SERVQUAL
responsiveness dimension based on food service
certification status. Users without certifications
reported higher responsiveness satisfaction compared
to those with certifications, indicating that certification
status influences perceptions of responsiveness in
actual service experiences.

Years of service also showed significant
differences in the assurance and responsiveness
dimensions. Users with 1-5 years of service or
6—-10 years reported higher levels of assurance and
responsiveness than those with over 16 years of
service, suggesting that newer employees place a
higher emphasis on trust and responsive service quality
than longer-serving staff.

In addition, age significantly influenced
perceptions of reliability, with younger users (aged
18-25) reporting a stronger expectation for reliable
service compared to older users (aged 46—65). This
indicates that younger customer are more likely to
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expect dependable service post-experience compared
to their older counterparts.

In summary, age, years of service, and
certification status showed significant effects on the
perception of actual experiences in catering quality,
while gender, hierarchical level, education level, and
military duty did not.

5.1.1. Analysis of Differences in Catering Service
Quality Perception Between Food Service
Providers and Customer (Gap 1)

Customer generally held lower expectations
regarding the overall portion sizes and variety of
meals, but reported high satisfaction after experiencing
the catering service (Chang, 2024). Customer expected
food service providers to maintain professional attire,
ensure dining hygiene, conduct routine disinfection,
maintain appropriate food temperatures (cold/hot), and
serve meals on time. In addition, customer anticipated
that personnel would have relevant certifications,
provide balanced nutrition, use fresh ingredients within
their effective dates, ensure container cleanliness,
deliver trustworthy service, and offer accessible
complaint channels. These expectations were generally
met by the food service providers.

For the unmet expectations in food safety, user-
centered service, and proactive oversight, customer
expected food service providers to ensure the structural
integrity of food containers, rigorously control food
safety, reliably manage meal provision, prioritize
user rights, show proactive concern, make timely
adjustments, and conduct routine service reviews.
However, food service providers placed less emphasis
on these aspects, leading to unmet expectations in
these areas.

In terms of the unmet expectations in empathy,
responsiveness, and overall cleanliness, customer also
expected attentive, considerate service, prompt and
accurate responses, and quiet, efficient service that
delivers satisfaction in a single attempt. In addition,
they held low expectations for overall food quality
and cleanliness of the dining environment, and the
performance of food service providers in these areas
did not lead to high satisfaction among customer.

5.1.2. Analysis of Differences Between Customer’
Expectations and Actual Experiences of Catering
Service Quality (Gap 5)

Customer generally had low expectations
regarding portion size and meal variety, yet reported
high satisfaction after experiencing these aspects of
the catering service (Chang, 2024). They expected
food service providers to maintain clean attire, ensure
container and ingredient cleanliness, hold relevant
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certifications, control food temperature (both hot and
cold), conduct routine disinfection, provide fresh,
balanced meals, monitor expiration dates, and review
any service errors. They also expected personnel to
show proactive concern for customer’ needs and these
expectations were met with high satisfaction in their
experience.

For the unmet expectations in hygiene, reliability,
and accessible feedback channels, customer had high
expectations for a hygienic dining environment,
reliable service, a focus on user rights, responsive
problem resolution, and accessible complaint channels.
However, actual satisfaction post-experience was
lower than expected, indicating a service perception
gap in these areas.

In terms of low expectations and low satisfaction
in responsiveness and overall quality, customer held
low expectations for responsiveness in understanding
user needs, accurately addressing issues, meal delivery
efficiency, overall food quality, dining environment
hygiene, and food flavor satisfaction. These aspects
were also rated poorly in actual experience, reflecting
low satisfaction and confirming that these areas did not
meet user expectations.

5.2. Research Recommendations

Based on the research conclusions, the following
three recommendations are proposed, covering
cognitive service, expected service, and actual
experience, to help military units improve group
catering user satisfaction in the future.

5.2.1. Focus Areas for Imnmediate Improvement

From the perspective of customer’ experience,
users emphasized the need for strict quality control
over food containers, oversight of potential food safety
incidents, consistency between served dishes and the
menu, and prioritizing user rights in food service. In
addition, they expect prompt responses to feedback,
routine reviews of service errors, and proactive
attention from catering units. The portions and variety
of meals were also highlighted as areas with lower
satisfaction post-experience, suggesting these should
be prioritized for improvement. These elements are
critical and should be the focus of immediate action,
with food service providers responsiveness considered
for secondary improvement.

5.2.2. Maintaining High Standards in Expected
Service Quality

Customer reported high satisfaction with aspects,
such as personnel appearance, professionalism,
environmental hygiene, appropriate food temperature

and expiration control, timely meal provision,
trustworthy service, and accessible complaint channels.
It is recommended that military units maintain these
standards consistently.

5.2.3. Training and Development for Enhanced
Service Quality

The study indicates that customers prioritize not
only food safety and reliability but also quality service
and responsiveness during the dining process. To
address these needs, it is suggested that service quality
and management-related courses be incorporated
into training programs for food service providers to
improve their service quality.

These recommendations aim to provide a
reference for military units as they work to enhance
the internal quality of group catering services.
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Abstract

Graphics processing units (GPUs) have emerged as powerful platforms for parallel computing, enabling personal
computers to solve complex optimization tasks effectively. Although swarm intelligence algorithms naturally lend
themselves to parallelization, a GPU-based implementation of the simplified swarm optimization (SSO) algorithm has
not been reported in the literature. This paper introduces a compute CUDA-SSO algorithm on the CUDA platform,
with a time complexity analysis of O (Ngen % Nsol x Nvar), where Ngen is the number of iterations, Nsol is the
population size (i.e., number of fitness function evaluations), and Nvar represents the required pairwise comparisons.
By eliminating resource preemption of personal best and global best updates, CUDA-SSO significantly reduces
the overall complexity and prevents concurrency conflicts. Numerical experiments demonstrate that the proposed
approach achieves an order-of-magnitude improvement in run time with superior solution precision relative to central
processing unit-based SSO, making it a compelling methodology for large-scale, data-parallel optimization tasks.

Keywords: Compute Unified Device Architecture, Graphics Processing Unit, Parallelism, Simplified Swarm
Optimization, Swarm Intelligence Algorithms

1. Introduction performing large-scale computations (AlZubi et al.,
In recent years, graphics processing units 2020; Hachaj & Piekar(?zyk, 2023). This evolution
(GPUs) have significantly impacted high-performance has fueled a surge of interest in GPU-accelerated
computing, particularly for data- and compute- algorithms across diverse fields, including medical
intensive applications. Originally designed to image processing (Corral et al., 2024; Mittal & Vetter,
accelerate real-time three-dimensional graphics, 2014), energy optimization (Mortezazadeh et al.,
GPUs now offer a parallel architecture that can handle 2022), and geospatial modeling (Hager et al., 2008).
massive throughput in general-purpose scientific One notable class of algorithms that can benefit
computing. Thanks to the availability of thousands significantly from the massive parallelism of GPUs is
of arithmetic logic units (ALUs) and large memory swarm intelligence (SI). Swarm intelligence algorithms
bandwidth, personal computers equipped with modern (SIAs), such as particle swarm optimization (PSO),
GPUs have become highly effective platforms for genetic algorithms (GA), and fireworks algorithms,
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draw inspiration from natural phenomena (e.g., bird
flocking, fish schooling, and evolutionary processes).
By orchestrating collective behaviors, these methods
iteratively refine candidate solutions within a high-
dimensional search space (Abbasi et al., 2020; Navarro
et al.,, 2014; NVIDIA, n.d.). SIAs naturally lend
themselves to parallel implementations, since core
operations such as fitness evaluation and local solution
updating occur at the per-particle or per-agent level,
often with minimal dependency among individuals.
Prior studies have documented considerable speedups
when porting SIAs to GPU architectures (Tan & Ding,
2015; Yeh, 2017; Yeh & Wei, 2012; Yildirim et al.,
2015), highlighting the strong synergy between swarm
parallelism and GPU hardware concurrency.

Despite the demonstrated success of GPU-based
SIAs, one variant, simplified swarm optimization
(SSO), has received limited attention on modern parallel
platforms. Since its inception in 2009 (Lee et al., 2012),
SSO has proven to be an effective population-based
search method, praised for its conceptual simplicity
and robust performance on real-world optimization
tasks (Corley et al., 2006; Luo et al., 2019; Yeh, 2015).
However, existing research on SSO has primarily
examined serial (central processing unit [CPU]-based)
implementations, leaving a conspicuous gap regarding
its parallel potential. By focusing on SSO, researchers
can harness its inherently straightforward swarm-update
rules to realize high degrees of concurrency. Moreover,
the method’s minimal parameter requirements and
flexible encoding scheme make it a compelling
candidate for GPU-based large-scale optimization.

To address this gap, we propose a compute unified
device architecture (CUDA) SSO (CUDA-SSO)
framework under the NVIDIA CUDA environment.
Departing from sequential SSO procedures, CUDA-
SSO capitalizes on concurrent kernel launches to
distribute the computational workload across thousands
of GPU threads. This design not only accelerates
fitness evaluations, typically the most time-consuming
step in swarm algorithms, but also introduces a parallel
update mechanism to circumvent resource-preemption
issues associated with personal best (pBest) and
global best (gBest) states in swarm-based searches.
By carefully encapsulating data in global memory and
minimizing CPU-GPU data transfers, we demonstrate
both improved solution quality and a drastic reduction
in overall execution time.

The main contributions of this paper are:

(i) A novel GPU-based SSO framework (CUDA-
SSO) that adopts data-parallel kernels and
reduces the theoretical time complexity of swarm
search steps.

A discussion of resource conflict avoidance by
re-structuring personal and gBest updates in a
parallel context.

(i)
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(iii) A comprehensive evaluation of standard
benchmark functions, showcasing an order-of-
magnitude speedup in run time, accompanied by
higher solution accuracy than CPU-based SSO
implementations.

The remainder of this paper is organized as
follows. Section 2 presents an overview of the
classical SSO algorithm, the fundamentals of general-
purpose GPU computing, and related GPU-based
SIAs. Section 3 details the proposed CUDA-SSO
algorithm, including its kernel-based design, memory
model, and theoretical time complexity analysis.
Section 4 provides experimental results with various
benchmark functions, comparing performance and
precision against the baseline CPU-based SSO.
Finally, Section 5 summarizes the findings, discusses
potential improvements, and outlines directions for
future work.

2. Background

Recent advances in high-performance computing
and optimization have witnessed the integration of
diverse approaches such as SI, evolutionary strategies,
and gradient-based search methods. In particular,
SIAs offer decentralized collective search capabilities,
while gradient descent (GD) relies on local derivative
information to iteratively refine candidate solutions.
Understanding how these paradigms intersect—
or diverge—can shed light on algorithmic design
principles that balance global exploration with local
exploitation. This section introduces SSO, a data-
parallel swarm algorithm noted for its streamlined
update rules. We then highlight key distinctions
between GD and swarm-based approaches, discuss
the essentials of general-purpose GPU (GPGPU)
computing, and conclude with an overview of relevant
GPU-based SIAs to contextualize the motivations
behind our work on CUDA-SSO.

2.1. SSO

SSO was initially proposed by Yeh (2009) as a
lightweight yet robust variant of SI, offering a balance
between algorithmic simplicity and practical
performance. Unlike more elaborate SIAs (e.g., PSO
with velocity—position updates or GA with crossover—
mutation operators), SSO employs a small set of
parameters (C , C, and Cg) that guide the sampling of
new solutions from each particle’s current state (xfj ),
pBest ( pi’j ), and gBest (gj). This approach obviates the
need for velocity vectors or mutation rates, reducing
the parameter-tuning overhead that can complicate
other SIAs.

Fundamentally, each iteration of SSO can be
broken into:
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(i)  Solution update: For each solution i and variable
J, the new solution xlg-”l) is drawn from one of
three sources—current solution, pBest, or gBest
based on probabilities (C , C, and C).

(i) Fitness evaluation: Each updated particle is
assigned a fitness score x,g’ D
(iii) Best-value updates: If f(Xi) is better than

a particle’s pBest, it is replaced. If f(Xi)
outperforms the current gBest, it is updated
accordingly.

2.1.1. Fundamental concepts and update strategy
population

SSO operates over a
X[ |i=1,2,..., Ny}, where X[ = (xf,,% 5.,
is a vector representing the i candidate solution at

generation 7 and x; ; is the j/* variable in X} forz= 1,

2,..,N andi=1,2,.,N_.Two supporting data

structures track the algorithm’s progress:

(i) pBests: P, = (p,,.p,,-P,,): The historically best
position of each particle, reflecting individually
optimal solutions found over previous iterations.

(i) gBest: P = (g,,g,&,): The optimal solution

Best
observed across the entire population.

Within each iteration, SSO applies a simple step
function to update the value of each variable x| ; In
the solution X!. As shown in Eq. (1), a random
number p is a random value drawn from a continuous
distribution ranging from 0 to 1, which drives the
selection among four possibilities: retaining the current
value xf’ ; » adopting p, , adopting g, or performing no
update.

xi ;if pel0,C, =c,)
Pt pe[C,.C,=C,+c,)
g, if pe[Cp,Cg =C, +cg)

x if pe[cg,l)

t+1 _
i,j

(D

Here, p;; denotes the j™ coordinate of the pBest
of the i solution, and g represents the corresponding
coordinate in gBest. The relative magnitudes of
(C., C,, and C,) balance exploration (i.e., adopting
global or pBests) against exploitation (i.e., retaining
current values). This compact parameterization
facilitates a more controlled search dynamic than in
many other SIAs.

2.1.2. Advantages of SSO over genetic algorithms

Genetic algorithms have historically been a
cornerstone of evolutionary computation, relying on
crossover and mutation operations to evolve solution
populations. However, SSO can frequently perform
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better in certain problem classes due to its simpler
update mechanism and more focused parameter space.
Key comparative advantages of SSO include:

(i) Reduced parameter tuning: Traditional GAs
demand meticulous adjustment of crossover rates,
mutation probabilities, and selection schemes. By
contrast, SSO relies on three probabilities (Cw,
Cp, and Cg) to guide each variable’s update. This
hyperparameter reduction often translates into
faster and more reproducible experimentation,
minimizing the risk of suboptimal tuning.
Potentially faster convergence: In SSO,
particles can directly adopt globally optimal
positions, whereas GAs depend on randomized
genetic operators to spread promising traits.
Consequently, SSO may converge more rapidly
on certain continuous or weakly multimodal
functions, mainly when the objective landscape
permits direct exploitation of high-fitness
regions.

Implementation simplicity: GA-based crossover
and mutation operators can become complicated
when dealing with high-dimensional or
heterogeneous solution representations. SSO’s
step-function update—requiring only a few
lines of code—facilitates implementation clarity,
reducing the likelihood of design or coding
eITOTS.

GPU suitability: Although GAscanbeparallelized,
SSO’s probabilistic mechanism, wherein each
variable is updated according to a small set of
global or pBests, typically presents fewer data
dependencies across particles. This structure
lends itself well to massive parallelization on
GPUs, making SSO an attractive option for large-
scale optimization tasks in high-performance
computing environments.

Hence, SSO offers a  comparatively
straightforward and potentially more consistent
pathway to large-scale optimization, particularly when
research or industrial constraints limit tuning resources
or demand high solution fidelity within compressed
timeframes.

(i)

(iii)

(iv)

2.1.3. SSO flowchart

SSO’s simplicity has proven advantageous
in several applications. For instance, Chung &
Wahid (2012) and Yeh (2012; 2013) demonstrate
its effectiveness in tackling complex real-world
tasks such as reliability design and feature selection.
Further refinements, such as orthogonal SSO (Yeh,
2014), reinforce the adaptability of SSO’s framework.
However, although prior literature confirms SSO’s
suitability for large-scale research, most studies have
employed CPUs, where time complexity grows rapidly
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with the population size and dimensionality. This
motivates the pursuit of a GPU-based parallelization
strategy that can leverage SSO’s inherent data-parallel
characteristics.

Algorithm 1 outlines the typical CPU-based SSO
flow. Each iteration updates particles by sampling
the step function, evaluates the fitness value for
each particle, and updates pBests and gBest if any
improvement is found. Although CPU-SSO can
yield excellent results for moderate-scale problems,
it becomes slow when the population and number of
variables are large.

Algorithm 1. The typical CPU-based SSO
Initialize:
Nsol =50, Nvar = 30, Ngen = 100
Var max = 5.12, Var_ min =-5.12
sol = Nsol x Nvar
pBests = Nsol x Nvar
gBest=0
Cw=0.2,Cp=0.5,Cg=0.8
explorationTime = 0

while explorationTime < cpuTimeLimit do
for iter in 1 to Ngen do
stepFunc(sol, pBests, gBest, randNum(Var max,
Var_min))
evaluate(solF, pF, gF)
if solF < pF then pBests(i) = sol(i)
if solF < gF then gBest = sol(i)
end if
end if
end for
end while

2.2. General-Purpose GPU Computing

Modern GPUs were originally engineered
to accelerate real-time three-dimensional graphics
tasks such as rasterization and shading. Over time,
these architectures evolved into GPGPU (Hussain
et al., 2016), wherein highly parallel GPU hardware
is repurposed to handle a variety of data-intensive
computations. By distributing large workloads among
thousands of arithmetic cores, developers offload
parallel tasks to the GPU while reserving more
complex, serial procedures for the CPU.

2.2.1. Execution model (CUDA framework)

NVIDIA’s CUDA (NVIDIA, n.d.) extends C/
C++ to enable heterogeneous computing. In CUDA,
the following function types determine where (CPU
vs. GPU) and how (serial vs. parallel) code is executed:
(i) Host functions: Host code is defined in C/

C++ and runs on the CPU. It is responsible for

high-level logic, memory allocation, and kernel

launch.
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(i1)) Kernel functions: GPU kernels are invoked
by the CPU but executed on the GPU, and
are subdivided into thread blocks and further
organized into warps of 32 threads, following
the single instruction, multiple threads paradigm.
They are ideal for data-parallel workloads such
as fitness evaluations or array/vector operations.
Device functions: Device functions are defined
and executed only on the GPU and are typically
called from within kernel functions to factor out
repeated computations.

(iii)

In this model, thousands of concurrent threads
can be spawned to run the same kernel, allowing GPUs
to efficiently process large, independent datasets.

2.2.2. Compute unified device architecture
memory hierarchy

Compute Unified Device Architecture’s memory
model separates storage into multiple tiers, each
balancing capacity and speed.

(i) Registers: Per-thread registers provide high-
speed storage and are best suited for frequently
accessed variables that do not exceed the register
file capacity.

Shared memory: On-chip shared memory
allocated per block enables fast data exchange
among threads in the same block and is
particularly useful for shared computations,
partial sums, and other cooperative tasks where
multiple threads access and modify the same
data.

Global memory: Off-chip global memory
provides large-capacity storage accessible by all
threads but has relatively high latency compared
to on-chip resources, making efficient access
patterns (e.g., memory coalescing) essential to
achieve high throughput.

Constant and texture memory: Read-only caches
accelerate common look-ups and are helpful
when all threads repeatedly use the same constant
or when two-dimensional array access patterns
can be optimized via texture hardware.

High-performance GPU applications often
involve coalescing memory accesses, judiciously
using shared memory, and minimizing branch
divergence (warp divergence). These considerations
ensure that multiple threads fetch contiguous elements
simultaneously and execute consistent instruction
paths whenever possible.

(i)

(iii)

(iv)

2.2.3. Data transfers and central processing unit-
GPU coordination

Since the CPU and GPU have separate memory
spaces, data must typically be transferred via the
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Peripheral Component Interconnect Express (PCle)

bus. Although essential for many GPGPU workflows,

these transfers introduce non-negligible latency.

Strategies to reduce transfer overhead include:

(i) Batching data: Copying large chunks of data at a

time rather than frequent small transfers.

Asynchronous transfers: Overlapping data

transfers with kernel execution improves device

utilization.

(iii) Unified Memory: Leveraging CUDA’s managed
memory features to let the runtime handle page
migrations between CPU and GPU, albeit with
some overhead for page-fault handling.

(i)

2.2.4. Implications for SIAs

SIAs—including PSO, GA, Firefly Algorithm,
and SSO—naturally benefit from GPGPU acceleration
due to their population-based structure. Each
individual (particle, agent, or chromosome) can be
evaluated in parallel, and gBest values can be updated
in a relatively small overhead step.

(i) Fitness evaluations: Commonly, the most
significant computational bottlenecks can be
massively parallelized by assigning a subset of
particles (or subdimensions) to separate threads
or warps.

Update mechanisms: Since SIA updates often
involve reading global parameters (e.g., best
solutions) and then writing back updated values
for each particle, careful design of coalesced
memory accesses and thread synchronization
(e.g., to avoid race conditions when writing to a
gBest value) is critical.

Data dependencies: Many SIAs only require
limited information exchange—such as neighbor-
based or globally best-based communication—so
the parallel workload is generally well-defined.

(i)

(iii)

Nonetheless, if a swarm’s communication
topology is complex (e.g., hierarchical or
multiswarm  structures), the kernel must

incorporate additional synchronization steps or
multiple kernel launches to handle inter-group
interactions without causing warp divergence or
data hazards.

When population sizes or problem dimensions
become large, GPU-enabled SIAs can harness
thousands of parallel threads across multiple
streaming multiprocessors (SMs), substantially
reducing run time relative to CPU-only approaches.
Consequently, adopting CUDA or similar frameworks
for SIAs—while paying close attention to memory
usage, thread management, and synchronization—can
yield significant speedups in large-scale optimization
scenarios. Synchronization in CUDA refers to
coordinating the execution of threads to wait for each
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other at specific points—usually to ensure that data
dependencies are respected (i.e., one thread does not
read a value before another finishes writing it).

2.3. GPU-Based SIAs Implementation

Parallelization of SIAs on GPUs leverages the
natural data-parallel structure of these methods. Within
each iteration, every swarm particle (or agent) usually
updates its position, evaluates its objective function,
and exchanges information with other particles
according to the algorithm’s communication model.

2.3.1. An Overview of notable GPU-based SIA

Table 1 provides an overview of notable GPU-
based SIAs, detailing which functions were ported to
GPU kernels in representative studies. The summarized
methods include standard and Euclidean PSO (Tsutsui
& Fujimoto, 2009; W. Zhu, 2011), multichannel PSO
(Kromer et al., 2011), multi-objective Gas (Wong,
2009; H. Zhu et al., 2011), and GA/differential-
evolution hybrids (Mussi et al., 2011; Ruder, 2016),
among others.

As these steps can be performed independently
or partially synchronized, the GPU is well-suited to
handle the large number of concurrent threads required
to process high-dimensional populations.

2.3.2. Four key kernel functions

SIAs naturally align with parallel architectures
due to their population-based structure (Yeh, 2017; Yeh
& Wei, 2012). In a GPU context, typical SIA workflows
can be divided into four key kernel functions:

(1) Initialize (I): Kernel Function (I) initializes the
population with random numbers and stores them
in global memory. Benefiting from the intuitive
implementation and data access in global
memory, most SIAs generated the population on
the CPU (NVIDIA Corporation, 2012). It might
have got a vast improvement for computing
efficiency if (I) the population on GPU instead
of CPU, although the way to arrange the global
memory may not be that intuitive (Mussi et al.,
2011; Ruder, 2016).

Evaluate fitness (E): Kromer et al. (2011) have
demonstrated that the most expensive step in
SIAs was to evaluate candidate solutions. The
most straightforward to deploy kernel function
(E) is the master—slave paradigm, where the
centralized controller dispatches particles in a
single population for parallelism. This approach
introduced no differences from an algorithmic
perspective but reduced the time-consuming
from a computational perspective.

(i)
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Table 1. Summary of studies of taxonomy analysis for swarm intelligence algorithms

References Swarm intelligence Methodology Speedup
algorithm
Tsutsui & Fujimoto | Stand particle swarm (D), (C), (U) on CPU. (E) on a GPU without shared x6—8
(2009) optimization (PSO) memory
W. Zhu (2011) Euclidean PSO (D), (C), (U) on CPU. (E) on a GPU without shared x1-5
memory
Kromer et al. (2011) | Multichannel PSO (U) on CPU, (1), (E), (C) on a GPU without shared %30
memory
Wong (2009) Multi-objective genetic | (I) on CPU, (E), (C), (U) on a GPU without shared 10-2
algorithm (GA) memory
H. Zhu et al. (2011) | Coarse-grain (D), (C), (U) on CPU, (E) on a GPU only without shared | x60
parallelization of GA memory
Li & Zhang (2011) Asynchronous and (D), (E), (C), (U) on a GPU with shared memory -
synchronous PSO
Mussi et al. (2011) GA D, (E), (C), (U) on a GPU with shared memory x2-12
Ruder (2016) GA and differential (D), (E), (C), (U) on a GPU with shared memory and x3-28 for GA,
evolution (DE) synchronization x19-34 for DE

Abbreviations: C: Communication; E: Evaluate fitness; I: Initialize; U: Update swarm

As shown in Table 1, Li & Zhang (2011) proposed (i) Memory-access patterns and  coalescing:
a CUDA-based multichannel particle swarm algorithm. Efficient GPU kernels rely heavily on coalesced
Wong (2009) implemented a parallel multi-objective global-memory transactions, whereby
GA. Tsutsui and Fujimoto (2009) ran a sequential SIA, consecutive threads access consecutive memory
dispatching a parallel GA for the particles. addresses. Achieving such patterns can involve
According to NVIDIA (n.d.) and Mussi et al. reorganizing particle data structures, interleaving
(2011), using shared memory in GPU code can population elements, or carefully aligning data to
guarantee speedup for data transferring. However, minimize misaligned accesses. Failure to do so
most did not perform (E) using shared memory. can negate much of the theoretical speedup from
(i) Communication (C): Unlike the directly parallelization.
distributing function (E), the function (C) proposes (ii)) Shared memory constraints: While shared
a more complicated model. It is distinguished by memory is a low-latency on-chip resource that
being loosely connected to the population and can accelerate repeated data accesses, the amount
irregularly exchanging particles. Communicate available per block (commonly 48 KB or less)
mechanisms were enabled between swarms may be insufficient for storing large populations
according to the law of data access, which means or high-dimensional problems. Consequently,
that communication between distributed groups many GPU-based SIAs place most of their data
of particles is acceptable. in global memory and resort to shared memory
(i) Update Swarm (U): Adjust the positions or only for small suboperations, such as partial
velocities (if applicable) of each particle based sums or local best-value comparisons.
on shared information. Function (C) and function (i) Warp divergence and synchronization: GPU
(U) do not have a single pattern to fit all SIAs. threads operate in warps of 32 concurrent threads.
We must only attend to the warp divergence and If branches in the kernel cause differing execution
bank conflict in these two functions. paths within the same warp, performance can
Across these works, the (E) kernel typically offers degrade significantly due to warp divergence.
the largest room for speedup, since fitness calculation SIA kernels that incorporate random sampling,
often dominates the total run time. Many authors have conditionals for updating best solutions, or
thus focused on accelerating (E) by distributing the communication topologies must minimize thread
population’s fitness evaluations to GPU threads. divergence and carefully place synchronization
barriers (syncthreads or kernel launches) to avoid
. race conditions when reading/writing global or
2.3.3. Implementation challenges shared data structures (e.g., gBest positions).
Despite the potential computational gains, (iv) Communication topologies: In many SIAs,

several implementation challenges arise when porting
SIAs to GPUs:
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information sharing is crucial for guiding the
swarm. This communication can be ring-based,
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star-based, hierarchical, or fully connected.
Implementing these topologies on a GPU requires
balancing frequent data exchanges with the cost of
global or shared-memory transactions, especially
as the population grows. Some researchers
tackle this by employing loosely coupled
subswarms, reducing the number of cross-group
communications and associated overhead.
Scalability and precision: GPU-based SIAs often
demonstrate significant speedups over CPU
counterparts when the population size is large
enough to saturate GPU resources. However, if
the swarm or dimensionality is too small, kernel-
launch overhead and data-transfer latencies may
outweigh parallelization benefits. Furthermore,
some applications demand higher-precision
arithmetic (e.g., double precision) that can
reduce throughput on specific GPU architectures.
Algorithm designers must thus tune swarm sizes,
memory layouts, and data precision settings for
optimal results.

)

These considerations indicate that GPU-based
SIAs benefit most when carefully tailored to exploit
hardware concurrency while mitigating memory and
synchronization bottlenecks. Ongoing advances in
GPU architectures—expanded on-chip memory, more
sophisticated warp schedulers, and built-in library
support—continue to ease the adaptation of SIAs for
large-scale, real-world optimization problems.

Building on these insights, the present work aims
to extend SSO into the GPU domain, integrating the
conceptual simplicity of SSO’s update mechanism
with the massive parallelism of CUDA. Our proposed
CUDA-SSO applies kernel-based parallelization
to SSO’s most time-consuming and data-parallel
steps, achieving significant speed gains and avoiding
concurrency conflicts when updating personal and
gBest states. In the following section, we elaborate on
the algorithmic framework of CUDA-SSO, including
memory organization, random number generation, and
a theoretical complexity analysis.

3. Compute Unified Device Architecture-SSO

Compute Unified Device Architecture-SSO
adapts the conventional SSO to leverage CUDA’s
parallelism. As illustrated in Fig. 1, each kernel
function runs concurrently across threads, reducing
both evaluation time and memory transaction overhead.

3.1. Random Number Generation

Random number generation (RNG) is essential
in SIAs because almost every aspect of the search—
particle initialization, stochastic exploration, and
crossover/mutation (in other SIAs)—depends on
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drawing pseudo-random values. In CUDA-SSO,
these numbers govern how each variable in a particle
decides whether to retain its current value, adopt its
pBest, or adopt the gBest. As a result, generating
robust random values at high speed is critical to ensure
both algorithmic performance and solution diversity.
A naive approach to RNG would compute
random numbers on the CPU and then transfer them to
the GPU each iteration. However, such data movement
across the PCle bus can introduce significant latency.
Instead, CUDA-SSO wuses NVIDIA’s cuRAND
(random number generation library (NVIDIA, n.d.)
to generate random numbers directly on the GPU,
thereby reducing CPU-GPU switching overhead.
The following points highlight key considerations for
efficient RNG in CUDA-SSO.
(i) cuRAND generators: NVIDIA’s cuRAND library
provides multiple generator types (e.g., Philox,
Mersenne Twister, and XORWOW) suited to
various performance and quality requirements.
Philox typically offers a good balance for most
GPU-based Monte Carlo or optimization tasks
due to its combination of speed and sufficiently
robust randomness.
State management: A dedicated initialization
kernel uses cuRAND application programming
interfaces to set up independent RNG states for
each thread on the GPU. Each state is assigned a
seed, sequence number, and offset. This allows
threads to maintain independent RNG states,
avoiding global memory contention during the
main kernel execution.
Scalability: Due to CUDA-SSO allocating one or
more threads per particle/variable, the number of
random values can become quite large, reaching
Nsol x Nvar x Ngen. However, cuRAND’s
batched generation methods allow bulk requests
of random values, leveraging GPU concurrency
to rapidly produce millions of samples.
Memory footprint and access: RNG states
are typically stored in global memory for all
threads to access during kernel execution,
with each thread updating its local state after
retrieving random samples via curand (& state).
To minimize overhead, threads often load their
RNG state into registers, generate all required
samples, and write the state back to global
memory only once per iteration, reducing global
memory transactions.
Kernel integration: Each thread within the main
CUDA-SSO search kernel can invoke cuRAND
library calls to draw random floats (e.g., uniform
or normal distributions) and apply them to the
SSO step function. While careful synchronization
may be necessary if multiple threads share RNG
states, this is typically avoided by assigning

(i)

(iii)

(iv)

™)
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Fig. 1. Proposed compute unified device architecture-simplified swarm optimization
Abbreviations: C: Communication; CPU: Central processing unit; E: Evaluate fitness; gBest: Global best;
GPU: Graphics processing unit; I: Initialize; pBests: Personal bests; PSSO: Particle-based simplified swarm
optimization; U: Update swarm

unique states to each thread.

Quality versus speed: While XORWOW
offers faster performance, it may exhibit lower
randomness quality for specific statistical tests.
Although Philox or Mersenne Twister variants
may run slightly slower, they often deliver
more reliable distributions. While most swarm
optimizations work well with any reasonably
distributed, uncorrelated RNG, mission-critical
or precision-sensitive applications may require
more robust generators.

(vi)

By generating all random numbers on the GPU,
CUDA-SSO avoids frequent PCle transfers and ensures
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that random samples are available on demand with
minimal latency. This strategy significantly improves
the algorithm’s scalability, allowing N_ < N x N,.,
random draws to be produced efficiently as the swarm
evolves. Consequently, RNG bottlenecks, which often
plague GPU-accelerated optimization, are effectively
mitigated, paving the way for faster and more diverse
exploration in the high-dimensional search space.

3.2. Thread Organization

Efficient thread organization is a cornerstone of
high-performance GPU applications, and CUDA-SSO
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takes advantage of CUDA’s execution hierarchy to
maximize throughput and minimize uncoalesced
memory accesses. This section details how thread
blocks, warps, and memory layouts are arranged to
accommodate large particle populations and high-
dimensional search problems.

3.2.1. Warp-level particle management

In CUDA-SSO, each warp—consisting of 32
threads—typically maps to one particle, such that the
warp’s threads can collaboratively handle that particle’s
variables (position vector, random updates, and fitness
computation). This design has several advantages.

(i)  Straightforward synchronization: Since a
warp executes in a lockstep single-instruction
multiple-threads fashion, synchronization within
the warp is simpler. For many operations, native
warp intrinsics (e.g., _ syncwarp()) allow
partial sums or shared computations to be done
without incurring the overhead of a block-wide
synchronization (__syncthreads()).

Fine-grained parallelism: If a particle has N
variables, they can be distributed across multiple
threads, allowing partial work (e.g., updating
each variable or computing partial fitness) to
proceed in parallel within the same warp.
Reduced warp divergence: Since all threads
in a warp handle logically contiguous parts
of the same particle, branching is minimized.
Divergence primarily arises if the particle’s data
triggers conditionals (e.g., random updates to
different variables). However, these are usually
minor compared to divergences caused by
dissimilar data accesses across multiple particles.

(i)

(1i1)

Compute unified device architecture’s thread
blocks group warps together, and a grid of blocks
covers the entire population.

Block sizes are chosen in multiples of 32
(e.g., 128, 256, and 512 threads/block) to ensure warp
alignment. In CUDA-SSO, a block typically manages
several particles—each warp in the block handles a
separate particle’s data.

Grid sizes are determined by how many blocks
are needed to encompass all particles. For instance, if
the swarm has N_ = 10,000 particles and each block
manages eight warps, we need at least 10,000/8 = 1,250
blocks to cover the swarm. This approach scales
well on modern GPUs with multiple SMs capable of
running dozens of blocks concurrently.

To fully utilize GPU bandwidth, CUDA-SSO
arranges each particle’s data (e.g., position vector, best
values) contiguously in global memory. When warp
threads access consecutive addresses, coalesced reads
reduce the required memory transactions. Key design
elements include:
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(i) Particle-centric layout: The position vector,
pBest, and related metadata for each particle are
stored back-to-back in memory. Threads within a
warp access sequential indices, aligning memory
requests with hardware transaction boundaries.
Avoiding strided access: If data for a single
particle were scattered or interleaved with multiple
particles, warp threads would fetch non-consecutive
addresses, leading to uncoalesced accesses and
lowered throughput. By contiguously grouping
a particle’s variables, CUDA-SSO preserves
coalescing even when the swarm is large.

Shared memory trade-off: Although shared
memory can accelerate repeated data accesses
(e.g., partial sums), large swarm sizes (hundreds
or thousands of particles, each with tens to
hundreds of variables) rapidly exceed the
typical 48-96 kb shared memory per block.
Consequently, global memory becomes the main
data store. Nevertheless, kernel designers may
still use shared memory for sub-operations (e.g.,
block-level reductions) if it is feasible within the
memory budget.

(ii)

(iii)

3.2.2. Synchronization and concurrency

Swarm intelligence demands occasional
synchronization to ensure that updated particle states
or gBest values are consistently available. In CUDA-
SSO, two main synchronization patterns arise:

(1) Warp-level: For tasks that only require threads
within the same warp to coordinate—such as
partial computation of a single particle’s fitness—
warp intrinsics (__syncwarp()) suffice. This is
faster than a full _ syncthreads(), affecting all
block threads.
Block- or grid-level: Specific global or pBest
updates may require broader synchronization:
° __Syncthreads() ensures all threads in the
block finalize local data before proceeding.
° Multiple kernel launches act as implicit grid-
wide barriers, guaranteeing that all blocks
complete one stage (e.g., updating pBests)
before starting the next (e.g., computing the
gBest).
Ensuring all local wupdates are complete
before any best-value comparisons helps avoid race
conditions, which might otherwise lead to inconsistent
reads or partial updates of shared variables.

For huge swarms or high-dimensional search
spaces, a single kernel launch might strain available
GPU memory or underutilize certain multiprocessors.
CUDA-SSO addresses these scenarios by subdividing
the population:

(i) Population splitting: Instead of handling all

NsoIN_{\mathrm{sol}} particles in one kernel, the

(i)
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swarm can be partitioned into subsets processed
by multiple sequential kernel launches or multiple
streams. Each subset undergoes search and fitness
evaluation before merging partial bests.
Multi-kernel scheduling: Modern GPUs support
concurrent kernels, enabling partial overlaps in
execution. If each subset’s memory footprint is
smaller, more streams can run concurrently on
different SMs, improving load balancing and
overall throughput.

Trade-off: Although subdividing can improve
concurrency, it introduces additional steps for
merging partial gBest values across subsets.
Careful scheduling is needed so that merging
overhead does not offset gains from improved
load distribution.

(i)

(1i1)

By adhering to warp-based particle updates,
coalesced memory access patterns, and appropriate
synchronization, CUDA-SSO efficiently distributes
workload across a GPU’s many SMs. In turn, this
enables (i) high utilization, where a large swarm or high-
dimensional setting can saturate GPU computational
resources, (ii) scalability, where as problem sizes grow,
additional blocks and warps smoothly extend parallel
coverage, and (iii) maintainability, where warp-level
design keeps each particle’s logic self-contained,
simplifying debugging and code maintenance.

Developers muststill tune parameters suchas block
size, register usage, and shared-memory allocations for
specific GPU architectures (e.g., differences between
NVIDIA Turing, Ampere, or Hopper architectures).
Nonetheless, the fundamental strategy—one warp per
particle, coalesced global memory, and synchronization
barriers for best-value consistency—forms a robust
template for realizing scalable, high-performance SI
on GPUs (Gordon & Whitley, 1993; Hadley, 1964;
Wolpert & Macready, 1995).

3.3. Compute Unified Device Architecture-SSO
Implementation

Leveraging GPU-based parallelism requires a
careful design of kernel functions, memory layouts,
and synchronization strategies. In CUDA-SSO, each
iteration (or generation) processes a large population
of particles on the GPU, avoiding frequent transfers
across the PCle bus. By dividing search, fitness
evaluation, and best-value updates into separate
kernels, the algorithm can efficiently harness the
GPU’s concurrent execution model.

3.3.1. Kernel-launch structure

Algorithm 2 illustrates the main flow of CUDA-
SSO. Each generation begins with random number
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generation on the GPU, followed by parallel kernels
for the search process (step function) and fitness
evaluations. Afterward, pBests and the gBest are
updated in parallel, with each block or warp managing
a subset of particles.

Algorithm 2. Flowchart for CUDA-simplified
swarm optimization

sol = Nsol x Nvar

pBests = Nsol x Nvar

gBest=0

set block size

syncThreads()

Initialize population
Initialize block size
Transfer data from CPU to GPU

//Kernel functions executed in parallel
for gen =0 to Ngen do

Search process for all particles //stepFuncin
parallel

syncThreads()
Update pBest for each solution //Kernel (U)
Update gBest for each solution  //Kernel (U)
syncThreads()

end for

Send data back to the CPU

The above design leverages the GPU’s parallel
capabilities to handle large numbers of particles in
each generation and ensures that intermediate results
are kept consistent across all threads before the next
update commences. Here is how it works:

(1) Parallel kernel launches: The design separates
operations into distinct parallel kernels for the
search process (step function) and for updating
pBests and gBest values. This approach enables
the concurrent execution of computation (E)
and communication (C) operations before
synchronizing for updates (U).

Synchronization: The system uses syncThreads()
or similar synchronization barriers to ensure
all threads complete their current operations,
whether searching or updating optimal values,
before moving forward. This synchronization
is vital for preventing race conditions and
maintaining consistent pBests and the gBest.
GPU-CPU transfers: To minimize PCle bus
overhead, data transfers between CPU and GPU
occur only twice: once at initialization and once
at completion. During iterations, all population
data remains in GPU memory, following the
memory management guidelines outlined in
Section 3.2.

(i)

(1i1)
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3.3.2. Parallel updates of pBests and gBests

Algorithms 3 and 4 illustrate how pBests and
the gBest are updated in a parallel environment. By
distributing the workload across GPU threads, CUDA-
SSO prevents any single update from dominating run
time and fully exploits GPU concurrency.

Algorithm 3. Parallel updates of personal bests.
syncThreads()
for each particle i in parallel do

Load current sol[i] and pBests][i]

if f(sol[i]) < f(pBests[i]) then

pBests[i] = sol[i]
end if

end for
syncThreads()

Algorithm 4. Parallel updates of the global best.
syncThreads()
for each particle i in parallel do

Load current pBests[i] and gBest

if f(pBests[i]) < f(gBest) then

gBest = pBests][i]
end if

end for
syncThreads()

Implementation details of Algorithms 3 and 4 are
discussed in the following:
(i) Warp/block-level work: Each particle is
processed in parallel. While it is not explicitly

While ( iter < maxlter ) { —>» n+l 3

for (1= 0;i<Nsol; i++) { —>» Nsol+1 3

for (j=0;j <Nvar; j++) { > Nvartl 3

i

< search process >

}
for (i=0;i<Nsol; i++) { ——> Nsol+1 ;
< update process > ——>» Nvar+1 3

}
|O (n3) for CPU thread |

3 n+l €«—— While ( iter < maxlter) {
3 3 . 3 | €— | <cUDA-SSO Search >
333 N‘f]r(— for (i=0; i< Nvar; i++) {
. 5 3 3 | €«<— < pBest Update >
333 | €<— < gBest Update >
}
}
|O (n) for CPU thread |
|O (n) for GPU threads |

stated that one warp must correspond to a single
particle, this configuration can be achieved by
selecting suitable block and grid sizes, thereby
reducing warp divergence and simplifying
synchronization.

Coalesced memory access: In these snippets, each
thread (or warp) reads data stored contiguously
in global memory for the assigned particle i. If
both sol i and pBest i reside in adjacent memory
locations, warp-level access requests naturally
coalesce into fewer transactions.
Synchronization points: The syncThreads() calls
at the start and end of each code block ensure
that all local read/write operations to pBests or
gBest finish before another kernel or step begins.
That is, the communication for global search
does not rely on synchronization mechanisms, as
these typically incur substantial overhead. Such
barriers prevent partial updates or inconsistent
reads across parallel threads.

(i)

(iii)

3.4. Time Complexity Analysis

Compared to CPU-SSO’s sequential structure,
CUDA-SSO distributes the update and evaluation
workload over many GPU threads, effectively
reducing the time complexity within each iteration.
Fig. 2 contrasts CPU-SSO’s single-thread approach
versus CUDA-SSO’s multi-thread parallelism. While
CPU-SSO tends to scale with O(n®) under large

[JCPU [OGPU [ICPU-SSO [JCUDA-SSO []O~ of thread(s)

Fig. 2. The time complexity analysis
Abbreviations: C: Communication; CPU: Central processing unit; CUDA: Compute unified device architecture;
gBest: Global best; GPU: Graphics processing unit; pBests: Personal bests; SSO: Simplified swarm optimization
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population sizes, CUDA-SSO exhibits near O(n)
scaling in the dominating computational kernel.

Table 3. Experimental parameters of compute
unified device architecture-simplified swarm

4. Experiments and Analysis

4.1. Benchmark Functions and Design of
Experiments

We tested nine standard benchmark functions,
shown in Table 2. These functions include both

optimization ble and i ol - th multimodal
No. | Graphics Compute unified device Se[:iara © alzl lmseparall N pr0peﬁle;, V;’It mu tn}lllo a
processing unit | architecture-simplified ar'l un.lmo al - complexities. Ea(? unction has  a
model swarm optimization dimension of N = 50. By controlling parameters such
| Block size o G G as N, (the maximum iteration f:ount), N_, (population
— size), and N (number of variables), we gauge both
2 - Population size: Ny . . .
the convergence (precision) and run time (speedup) of
3 - Number of variables: Nua CPU-SSO versus CUDA-SSO.
4 - Number of generations: N, From Table 3, we know we need to do a
seven-factor experimental design, 128 experiments.
Table 4. Factor for the parameters of compute Itis 1mpgss1ble to do such a job with contracted
. . . Lo computational resources. Thus, the parameters:
unified device architecture-simplified swarm block si NN i N q
optimization search ock size, N, N, and N, were arranged as
follows: 1,024, 100, 50, and 1000, referring to other
No. Cw, Cp, and Cg . .
papers (Li & Zhang, 2011; NVIDIA Corporation,
1 0.1,0.3,0.7 2012).
2 0.1,04,0.38 The remaining parameters to be tested are the
3 0.2,0.4,0.6 CUDA-SSO search parameters: C , Cp, and Cg. Six
4 0.2,0.5,0.9 parameter levels were evaluated in the experiments,
P 03,0405 as shown in Table 4. The experimental design of the
R parameter combinations presented in Table 4 was
6 0.3,0.6,0.8 analyzed using scipy.stats library (Pllana & Xhafa,
Table 5. The parameter combinations analyzed using the Kruskal-Wallis H-test
Parameters Values
Cw 0.1 0.1 0.2 0.2 0.3 0.3
Cp 0.3 0.4 0.4 0.5 0.4 0.6
Cg 0.7 0.8 0.6 0.9 0.5 0.8
Method
Ranking 3,843.173 1,968.923 4,840.817 2,037.200 6,270.421 1,919.306
Statistic 19,1.0773 p-value 2.2989086e-39
Table 6. Precision comparison for central processing unit-simplified swarm optimization and compute unified
device architecture-simplified swarm optimization
Function Central processing unit-simplified swarm Compute unified device architecture-simplified
optimization swarm optimization
Average Standard Minimum Average Standard Minimum
A 54.9497 7.4781 39.0219 41.0156 5.3095 28.5125
bA 1,152.7869 110.1388 986.4035 820.1844 91.6444 635.6414
A 192,950.2539 18,823.6598 162,102.9062 127,504.9484 17,093.0233 103,114.1562
I 1,573.8801 179.6216 1,190.2180 1,103.9103 134.5448 730.0332
/5 269.3232 14.4775 248.3413 220.6183 16.2710 189.2935
Ty 16.7117 0.2739 16.0508 15.2896 0.3655 14.7103
A 199.0340 20.2784 156.4854 145.3612 19.4239 95.3518
Iy 1,989.3588 396.4583 1,438.9280 1,181.2840 270.4324 727.8101
I 20,719.6228 4.5922 20,706.0234 20,708.0471 3.6021 20,702.3574
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2017) by the Kruskal-Wallis H-test. According to
the Kruskal-Wallis H-test results in Table 5, the
p=2.2989086e-39 is <0.05 in the 95% confidence
level, indicating significant differences among the six
parameter combinations. Based on the ranking values,
the sixth parameter combination demonstrated the best
performance. Therefore, the best performance was
achieved when the parameters (C , Cp, and Cg) were
set to (0.3, 0.6, and 0.8), which were adopted as the
final parameter settings.

To set the same difficulty in all problems,
first, we must choose a dimension particle size (P)
search space for all benchmark functions. Second,
we use the P obtained from the first step to test the
performance of CUDA-SSO. In this subsection,
the experiments are executed by the benchmark
function f,.

We implemented CPU-SSO according to
Section 2.1 and proposed CUDA-SSO, as described
in Section 3. In mimics, we ran f—f, 20 times
independently, with 1000 iterations for each run.
For CPU-SSO, we performed the same number
of function evaluations as CUDA-SSO. The two
algorithms have been tested on the same criterion
for a fair comparison. The experimental parameters
were set as follows: P=50, Cw=0.3, Cp=0.6,

4.2. Precision and Speedup

This subsection shows the trial for CPU-SSO
and CUDA-SSO in 20 independent runs by testing
the benchmark functions (Table 2). The average result
and corresponding standard deviation are illustrated
in Table 6. We utilized the Friedman test (Friedman,
1994) to verify differences. As described in Table 7,
most cases have statistical differences for the precision
of the solutions in CUDA-SSO.

In addition, the algorithmic flow and data
structure of CUDA-SSO (Section 3.3) significantly
improved the value of gBest. Table A1 shows the output
data of the precision of the solutions for CUDA-SSO.

In general, as far as the average and the minimum
of the performances were concerned, CUDA-SSO’s
performances on multimodal function and unimodal
function f1 to f9 worked better than CPU-SSO.

Besides the precision of the solutions, efficiency
is a critical factor that must be considered. Speedup and
efficiency are among the most common measurement
methods to compare the test results. They were
illustrated in Eq. (2) and Eq. (3). Nevertheless, either
speedup or efficiency cannot reflect the exploitation
of computational power. Thus, our research adopted
performance criteria: rectified efficiency (Eq. [4]).

Cg:0.8.' In our experimental environment, the Speedup = T l:meCPU )
comparison speedup was tested by N_ = 100, 200, Timegpy;
300, and 350.
P
Ratio = L2We6ru. (3)
Table 7. Friedman test for the precision Powercp;
of the solutions in compute unified device
architecture-simplified swarm optimization RE  Speedup 4)
Function Statistic p-value Ratio
A 19.9200 0.0002 The output data of the speedup test for CUDA-
JA 24.6000 0.0000 SSO is listed in Table A2. Speedup experiments are
depicted in Table 8. A series of experiments was
f 24.6000 0.0000 pi p
I 21,9600 0.0001 carried out to check the speedu.p of CPU-SSO and
CUDA-SSO. Among these experiments, the Nsol was
Js 24.6000 0.0000 set to 100, 200, 300, and 350, respectively. The result
/, 24.9600 0.0000 showed that CUDA-SSO accelerates up to x164.2206
f, 21.7200 0.0001 compared with CPU-SSO when Nsol = 100. The
7 23 1600 0.0000 speedup ] performapce was becoming more prominent
as the size of Nsol increased. The maximum speedup
f 19.5600 0.0002 : _
9 was %1,604.3382 in the case of Nsol = 350.
Table 8. Running time and speedup for the benchmark function Rosenbrock
Nsol | Central processing unit-simplified swarm Compute unified device Rectified efficiency
optimization architecture-simplified swarm optimization
100 48.8263 0.13875 164.2206
200 193.10285 0.154 585.1602
300 434.8518 0.1638 1,238.8940
350 582.71855 0.1695 1,604.3382
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5. Conclusion

This paper introduced a GPU-based CUDA-
SSO, leveraging the well-known SSO’s simplicity and
integrating it into the CUDA framework. By adopting
a parallel processing strategy and minimizing data
transfers between CPU and GPU, CUDA-SSO excels
in computational speed and solution precision. Our
experiments demonstrated:

(i) Time complexity reduction: CUDA-SSO
mitigated CPU-SSO’s O(n3) scalability issues
by distributing the workload across thousands of
GPU threads.

(il) Significant speedups: For benchmark functions,
CUDA-SSO outperformed CPU-SSO with
speedups up to x1,604.34\times 1,604.34 at
larger population sizes.

(iii) Improved solution accuracy: Statistical analysis

(Friedman and Kruskal-Wallis tests) showed
that CUDA-SSO yielded notably higher-quality
solutions than CPU-SSO across multiple
benchmark functions.

To improve the overall efficiency of the
proposed approach, future research may explore
alternative memory allocation strategies, as memory
management plays a crucial role in the performance of
parallel and distributed systems—particularly where
access speed and bandwidth are critical. Adaptive
memory techniques can help reduce latency, lower
contention, and optimize resource usage. In addition,
parameter tuning and choosing algorithmic parameters
that significantly impact model effectiveness and
computational cost should be emphasized. Future
studies can achieve more scalable, efficient, and
reliable performance by integrating efficient memory
management with robust parameter tuning. Although
rectified efficiency is introduced, future research could
provide rigorous justification or comparisons with
traditional parallel efficiency metrics.
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Appendix

Table A1. Output data of the precision of the solutions for compute unified device architecture-simplified
swarm optimization

Type |, /, /. I AN /, 4,
CPU 57.82 1,069.30 185,060.89 1,344.71 259.23 16.95 196.72 1,786.07 20,718.92
CPU 39.02 1,207.01 179,721.33 1,579.31 260.32 16.84 234.03 1,438.93 20,712.57
CPU 60.39 1,010.91 231,277.19 1,305.95 251.80 16.52 181.27 2,504.35 20,706.02
CPU 49.92 1,024 .91 217,473.16 1,595.23 253.40 16.88 175.41 2,661.07 20,722.49
CPU 53.80 993.56 234,086.36 1,466.08 291.53 16.65 200.09 1,911.11 20,721.33
CPU 56.81 1,213.34 195,778.31 1,601.14 284.36 16.58 202.84 1,842.27 20,721.46
CPU 53.31 1,058.56 194,398.47 1,479.26 263.41 16.76 203.98 2,825.84 20,725.72
CPU 47.54 1,361.57 190,197.06 1,705.98 249.95 17.20 184.71 1,768.86 20,719.32
CPU 69.00 986.40 162,102.91 1,647.99 269.47 16.62 213.29 1,462.96 20,721.66
CPU 61.88 1,281.48 173,873.59 1,536.36 286.90 16.72 189.20 1,773.87 20,719.98
CPU 62.03 1,256.16 184,865.73 1,619.13 279.64 16.62 201.49 2,083.50 20,713.47
CPU 60.32 1,204.71 192,596.94 1,699.70 265.15 16.40 218.22 2,384.77 20,722.15
CPU 49.26 1,147.99 200,337.53 1,679.18 284.74 17.02 197.28 1,662.26 20,717.72
CPU 63.23 1,041.88 212,481.92 1,731.55 257.07 16.46 235.21 1,544.44 20,721.78
CPU 61.97 1,206.52 164,635.55 1,641.58 278.79 16.41 158.47 1,481.78 20,717.70
CPU 60.68 1,233.61 177,676.94 1,190.22 285.63 16.05 200.81 2,092.47 20,719.91
CPU 51.53 1,261.56 200,216.28 1,470.10 280.31 17.14 156.49 1,922.02 20,719.85
CPU 44.84 1,242.82 194,000.47 1,972.64 248.34 16.89 205.72 2,448.71 20,727.23
CPU 50.65 1,210.58 182,236.14 1,385.07 251.20 16.96 215.06 2,038.71 20,719.54
CPU 4497 1,042.85 185,988.31 1,826.44 285.23 16.57 210.41 2,153.19 20,723.66
GPU 43.39 855.83 118,060.55 1,063.94 189.29 15.43 156.66 1,188.65 20,704.46
GPU 45.56 725.88 141,413.03 1,092.53 231.59 14.71 159.39 1,249.47 20,707.90
GPU 45.01 967.91 131,710.67 730.03 205.58 15.26 95.35 727.81 20,714.68
GPU 36.17 845.70 134,990.25 1,338.93 205.13 15.05 143.00 1,039.97 20,709.13
GPU ,43.27 939.87 129,875.73 972.40 192.81 15.21 154.22 962.32 20,702.36
GPU 34.54 821.64 111,364.34 1,299.02 242.38 15.21 167.35 904.35 20,708.38
GPU 42.41 782.17 133,603.25 1,074.08 211.55 15.45 135.07 1,211.44 20,710.81
GPU 42.46 739.65 108,214.88 1,248.61 222.93 15.59 133.56 1,332.69 20,716.58
GPU 54.16 912.20 103,114.16 1,077.81 227.66 1591 170.80 1,028.79 20,706.01
GPU 37.96 871.04 114,409.24 1,021.06 237.07 15.30 124.51 1,232.94 20,705.02
GPU 28.51 860.33 130,606.30 1,206.30 207.38 15.42 126.97 742.96 20,710.50
GPU 37.52 916.54 137,729.39 1,190.32 236.03 15.73 128.43 1,276.49 20,707.72
GPU 33.99 936.44 145,870.27 1,209.92 220.32 15.56 156.92 925.97 20,706.60
GPU 38.63 804.80 121,314.86 1,177.88 225.26 14.82 147.35 1,715.38 20,704.36
GPU 39.50 645.15 127,713.55 1,133.51 230.44 15.76 136.74 1,054.60 20,707.92
GPU 45.26 727.07 104,419.79 1,066.93 254.98 14.72 159.17 1,357.28 20,710.06
GPU 43.49 844.17 155,562.56 914.05 228.61 14.74 180.26 1,749.65 20,703.45
GPU 41.12 809.00 117,463.82 1,139.54 210.75 15.54 162.61 1,450.71 20,711.72
GPU 44.30 635.64 111,732.80 1,024.59 207.29 15.58 139.15 1,406.60 20,708.95
GPU 43.08 762.64 170,929.52 1,096.76 225.29 14.80 129.73 1,067.60 20,704.33

Abbreviations: CPU: Central processing unit; GPU: Graphics processing unit.
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Table A2. Output data of the speedup test for compute unified device architecture-simplified swarm optimization

Type Particle size 100 200 300 350
CPU 1 49.063 191.183 437.161 564.453
CPU 2 49.073 189.712 439.999 562.614
CPU 3 48.418 190.58 440.908 565.67
CPU 4 47.88 192.824 437.476 563.651
CPU 5 47.758 192.861 428.533 563.799
CPU 6 48.389 191.056 434.753 565.119
CPU 7 49.176 188.301 434.557 571.929
CPU 8 48.248 190.205 431.854 575.904
CPU 9 48.212 189.323 435.387 568.348
CPU 10 50.346 189.678 432.782 582.892
CPU 11 49.061 192.337 432.366 583.594
CPU 12 49.662 194.05 427215 607.547
CPU 13 49.306 195.631 429.057 601.964
CPU 14 49.547 192.663 433.167 598.993
CPU 15 48.484 197.172 435.056 599.659
CPU 16 48.968 196.5 432.65 598.553
CPU 17 48.827 195.68 439.168 604.617
CPU 18 48.903 197.722 436.881 591.776
CPU 19 47.779 196.185 439.258 594.146
CPU 20 49.426 198.394 438.808 589.143
Average 48.8263 193.10285 434.8518 582.71855

GPU 1 0.15 0.166 0.18 0.19
GPU 2 0.139 0.152 0.174 0.167
GPU 3 0.139 0.144 0.162 0.166
GPU 4 0.138 0.144 0.169 0.174
GPU 5 0.138 0.142 0.156 0.161
GPU 6 0.139 0.143 0.167 0.172
GPU 7 0.141 0.148 0.157 0.16
GPU 8 0.136 0.154 0.16 0.169
GPU 9 0.137 0.159 0.161 0.17
GPU 10 0.136 0.146 0.166 0.165
GPU 11 0.137 0.173 0.166 0.165
GPU 12 0.136 0.168 0.162 0.172
GPU 13 0.137 0.153 0.163 0.169
GPU 14 0.143 0.152 0.162 0.177
GPU 15 0.144 0.151 0.166 0.161
GPU 16 0.135 0.16 0.165 0.177
GPU 17 0.14 0.168 0.165 0.169
GPU 18 0.135 0.158 0.158 0.166
GPU 19 0.134 0.15 0.158 0.17
GPU 20 0.141 0.149 0.159 0.17
Average 0.13875 0.154 0.1638 0.1695

Abbreviations: CPU: Central processing unit; GPU: Graphics processing unit.
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Abstract

The development of microarray technology has facilitated expression profiling analysis for various medical and
agricultural research areas. Despite the increasing range of applications, precision in isolating microarray images
remains a challenge due to noise and variances in spot morphology. This research proposes a hybrid and adaptive
clustering solution that offers significant improvement in terms of accuracy, segmentation, noise reduction,
processing time, and overall efficiency. The study used an adaptive K-means clustering approach enhanced with
genetic algorithms and bi-dimensional empirical mode decomposition. This hybrid framework achieved an average
segmentation accuracy of approximately 95%, compared to 85% with conventional K-means, showing its superiority.
In addition, the enhanced method achieved unparalleled noise reduction by 80% and improved signal-to-noise ratio
by 200%, while maintaining efficiency with an average image processing time of 1.2 s. These results uniquely address
complex challenges in microarray image analysis, unlocking new solutions critical for gene profiling in medicine and
agriculture, and driving transformative advancements in the sectors.

Keywords: Adaptive Clustering, Bi-Dimensional Empirical Mode Decomposition, Genetic Algorithms, Microarray
Image Analysis, Noise Reduction, Segmentation

1. Introduction and learning techniques. As summarized in Table 1,
recent studies have implemented various enhancement
strategies such as Kalman-based filtering (Pan et
al., 2016; Pfleger et al., 2019; Roonizi & Selesnick,
2022) and adaptive denoising frameworks (Yang et
al., 2010; Zhang, 2022), which improve image clarity
while maintaining computational efficiency. Similarly,

Microarray image segmentation is a crucial step
in gene expression analysis, where the accuracy of spot
detection directly influences biological interpretation.
Traditional image segmentation approaches, including
thresholding and region-based methods, often suffer

from issues such as noise interference, uneven entropy-based and bio-inspired algorithms (Naik et al.,
illumination, and overlapping spots. To overcome 2021; Eluri & Devarakonda, 2023) have demonstrated
these challenges, researchers have explored advanced effective noise suppression and clustering accuracy
and hybrid algorithms that integrate optimization across biomedical imaging domains.
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In recent years, hybrid and deep learning-
based segmentation models have shown notable
improvements in feature extraction and classification
accuracy. For example, Roth et al. (2022) and Ch et
al. (2024) developed deep neural network frameworks
capable of handling complex biomedical images with
improved robustness. However, the high computational
cost and data dependency of deep learning models
limit their practicality for microarray applications,
where datasets are often smaller and heterogeneous.
Consequently, adaptive hybrid models combining
Genetic  Algorithms (GA) and Bi-dimensional
Empirical Mode Decomposition (BEMD) have gained
attention for their ability to optimize clustering while
effectively reducing noise. Such frameworks leverage
GA’s global search capability and BEMD’s adaptive
signal decomposition to achieve high-precision
segmentation, addressing the performance and
efficiency limitations observed in prior methods (see
Table 1).

Recent research attempts to enhance the
performance of microarray image segmentation
using techniques such as particle swarm optimization
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Fig. 1. Microarray image with gridded spots

Adapted from Jiang et al. (2021)

Different image segmentation

techniques
l v
PSO Deep Genetic
particle swarm learnlng algorithms

optimization

Adaptive hybrid
clustering

Fig. 2. Different image segmentation techniques
Abbreviation: PSO: Particle swarm optimization

(PSO), deep learning, and genetic algorithm (GA).
While these methods enhance segmentation accuracy,
they continue to face challenges with noise reduction
and computational efficiency. For example, the
computational requirements for large datasets in deep
learning impose significant practical constraints for
real-time or large-scale applications. Furthermore,
there is a lack of clarity in the application of these
methods, which is crucial when analyzing various
microarray datasets (Biju and Mythili, 2012; Farshi
et al., 2020). An example of a microarray image with
gridded spots is shown in Fig. 1.

Fig. 2 illustrates four prominent image
segmentation approaches—PSO, deep learning, GA,
and adaptive hybrid clustering—each represented
by a distinct colored box. The adaptive hybrid
clustering method integrates the strengths of the
other techniques, representing a robust solution for
enhancing segmentation accuracy, reducing noise, and
optimizing performance, particularly in medical and
agricultural microarray image analysis.

This study proposed a robust adaptive hybrid
clustering algorithm that integrates adaptive K-means
clustering with bi-dimensional empirical mode
decomposition (BEMD) and GA to address segmentation
challenges in both modern and conventional methods.
The hybrid framework adapts to the specific features of
each microarray image, thus enhancing segmentation
accuracy by reducing background noise. Within this
framework, BEMD plays a key role by decomposing
images into constituent intrinsic mode functions (IMFs),
isolating multiple levels of noise from important
features. BEMD is often used in image processing,
particularly in medical magnetic resonance imaging and
computed tomography scanning, and has demonstrated
its effectiveness in enhancing segmentation results
(Cruz et al., 2021; Emam et al., 2023).

A

Fig. 3. Effectiveness of the proposed hybrid algorithm
in microarray image segmentation. (A) Clustering
illustration. (B) Segmentation results
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Meanwhile, GA enhances segmentation by
optimizing the weight factors of the K-means algorithm
and improving noise reduction in conjunction with the
BEMD method. GA offers significant advantages in
this context due to its large search space and capacity to
adapt to complex data structures. This hybrid method
delivers both flexibility and efficiency, providing
robust solutions vital for accurate microarray image
segmentation, an indispensable step in gene profiling
for medical and agricultural research (Biju and Mythili,
2012; Gharehchopogh and Ibrikei, 2024).

Fig. 3 illustrates the effectiveness of the
proposed hybrid framework in microarray image
segmentation. Fig. 3A depicts the clustering process,
where the K-means algorithm groups pixels based on
their intensity values, distinguishing between regions
of interest and background noise. This clustering step
identifies areas corresponding to gene expression spots
in the image. Fig. 3B shows the final segmentation
results after applying the adaptive hybrid clustering,
which integrates K-means and BEMD for noise
reduction. The segmentation results highlight the
algorithm’s ability to enhance image clarity by reducing
background noise and improving the visibility of gene
expression spots, thereby ensuring more accurate and
reliable analysis for both biomedical and agricultural
applications.

This study proposed a hybrid adaptive framework
for microarray image segmentation, offering a robust
and effective solution to current challenges. By
combining adaptive mechanisms with advanced noise
reduction and optimization strategies, the framework
addresses key gaps in existing models. Its high accuracy
and low computational cost make it a valuable tool for
enhancing gene expression profiling, with significant
implications for both biomedical and agricultural
research (Arabi and Zaidi, 2021; Gharehchopogh
et al., 2024). The key contributions include:

(i) An adaptive clustering approach is constructed
based on the silhouette coefficient, enabling
automatic estimation of the number of clusters
without manual input

Noise suppression and segmentation accuracy
are enhanced through the integration of BEMD
and GA, both of which adapt to the specific
characteristics of microarray images
Segmentation accuracy is improved, achieving
higher accuracy in gene expression profiling
within both biomedical and agricultural research
contexts

The proposed framework, designed as a hybrid
adaptation of conventional clustering methods,
is evaluated, demonstrating an average increase
of 20% in segmentation accuracy and noise
reduction.

(i)

(iii)

(iv)
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2. Literature Review

The accuracy of microarray image segmentation
directly affects how well we can assess gene expressions
in clinical and agricultural studies. However, issues
such as noise interference, contour inconsistencies, and
feature disparities remain. Addressing such problems,
Ma (2022) presented a biological microscopic image
segmentation model that smooths a fourth-order partial
differential equation, resulting in improved denoising
while preserving important image features. Likewise,
Talha et al. (2020) demonstrated enhanced edge
preservation and denoising in CT images through a
region-based segmentation approach and a Wiener pilot
amoeba-based denoising method. Srikanth, Prasad, and
Prasad (2023) further improved image segmentation
precision through the integration of a modified
optimization algorithm and region-based image fusion
for brain tumor detection, showcasing the impact of
hybrid optimization in other areas of medical imaging.
Likewise, Wang et al (2022) created a Latin square
matrix encryption algorithm and demonstrated the
use of mathematical models in bolstering the security
and image reliability processing. Also important,
Yang et al. (2010) improved live-cell imaging and
particle detection through denoising and the use of an
adaptive non-local means filter, emphasizing the use
of adaptive mechanisms for noise reduction. Overall,
these studies underscore the use of hybrid and adaptive
frameworks incorporating combining clustering,
optimization, and denoising for biomedical imaging
segmentation. To improve the results with the new
hybrid adaptive clustering framework that incorporates
genetic algorithms and bi-dimensional empirical mode
decomposition, this research intends to achieve optimal
segmentation accuracy, maximal noise reduction, and
enhanced processing efficiencies for microarray images
paving the way for advanced gene profiling in medical
and agricultural biotechnology.

Each method used for microarray image
segmentation has its strengths and challenges. Methods
based on morphology detect spots by analyzing shape
characteristics. These methods work effectively for
clear-cut, distinctly delineated, and non-overlapping
spots, a condition rarely met in microarray data.
Morphology techniques can fail when confronted
with irregular spot shapes, inconsistent intensity
distributions, or overlapping borders (Arabi and Zaidi,
2021; Bal et al.,, 2020). Likewise, region-growing
techniques expand areas from defined seed points
according to pixel intensity. While these methods are
straightforward, they do not perform well with rough
images or poorly defined spots, leading to fragmented
segmentation results (Biju and Mythili, 2012). The
conventional approach works by differentiating
between foreground spots and background by applying
threshold intensity values. This technique relies on
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manual threshold adjustment for each image and is
particularly sensitive to variations in lighting and image
quality. Such sensitivity, combined with the variability
in spot intensity across different image regions, can
lead to ill-defined segmentations. Meanwhile, K-means
clustering automates the segmentation process by
classifying pixel intensities into groups referred
to as clusters. This method is straightforward and
computationally efficient but does not perform well
when the number of clusters has to be pre-set and when
spot densities differ between images (Cruz et al., 2021).
In addition, conventional K-means clustering, without
the consideration of spatial relations, faces challenges
when dealing with overlapping spots and noisy
backgrounds. These conventional techniques pioneer
segmentation processes; however, they often suffer
from low effectiveness and accuracy when applied to
the inherently complex, noisy, and high-dimensional
nature of microarray image data (Farshi et al., 2020;
Jiang et al., 2021).

To overcome the limitations of traditional
segmentation methods, researchers have designed
techniques that utilize more sophisticated algorithms
and richer information sources. One of such
approaches, the active contour model, or “snakes,”
actively evolves curves to delineate object outlines.
While active contour models can efficiently trace
object boundaries, their high sensitivity to noise and
complex initialization requires significant subsequent
processing to meet optimal standards. Furthermore,
they are often costly in terms of computational
resources, limiting their use in large-scale datasets
such as microarrays (Belgrana et al., 2020; Emam
et al.,, 2023). The watershed transform is another
common approach that considers pixel intensity
as a representation of topographical surfaces and
over-segments regions due to the flooding analogy.
Although the watershed transforms are able to execute
precise segmentation, especially in greatly contrasted
images, they have a high chance of over-segmenting
noisy environments, making the subsequent fine-
tuning process both complex and time-consuming
(Gharehchopogh and Ibrikei, 2024). Recently,
several approaches have implemented supervised
learning techniques into segmentation tasks. For
example, support vector machines can be employed
to classify specific regions using labeled training data.
Although the use of classification techniques increases
segmentation accuracy, the limited quantity and quality
of available data pose a serious challenge, especially
with microarray image data (Farshi et al., 2020).

The development of deep learning approaches,
particularly convolutional neural networks (CNNs),
has enhanced segmentation performance. CNNs excel
at image processing tasks by automatically learning
hierarchical features from data, allowing them to capture
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more complex patterns and handle noise effectively.
Other models, such as U-Net and Mask R-CNN, have also
achieved remarkable accuracy in image segmentation
tasks, including biomedical applications (Cruz et al.,
2021; Jiang et al., 2021). Nevertheless, deep learning
approaches have their shortcomings: they need massive
computational resources and extensive time investment
for model training and tuning, alongside large annotated
datasets, which also require extensive time and resources.
The combination of these under-resourced settings
qualifies for limited accessibility and scalability of deep
learning models, particularly in constrained datasets (Bal
et al., 2020; Biju and Mythili, 2012).

2.1. Hybrid Approaches

To address segmentation challenges, it has
become customary to employ combined sophisticated
multi-algorithm techniques, with each algorithm
contributing its share of advantages and disadvantages.
Each of these methods attempts to enhance accuracy,
robustness, and noise resilience (Gharehchopogh and
Ibrikei, 2024). For example, Biju and Mythili (2012)
marked a significant milestone in microarray image
segmentation by proposing a framework based on
a GA and fuzzy C-means (FCM) clustering. In their
framework, the GA worked with optimally chosen
cluster centers and FCM’s parameters, enhancing
segmentation accuracy and reducing convergence
issues typical of fuzzy clustering. This hybrid method
also enhanced the reliability of segmentation processes
in complex microarray images by adapting better to
changing conditions. Kollem et al. (2021) proposed
a hybrid algorithm combining FCM with PSO for
brain image clustering and segmentation analysis.
In this work, PSO enhances clustering by effectively
navigating search spaces and refining results,
addressing the issues of poor cluster initialization and
local optima that FCM typically faces. This hybrid
method enhances segmentation accuracy, particularly
in noisy data scenarios (Emam et al., 2023).

Maryam et al. (2022) applied the gray wolf
optimization (GWO) algorithm as an enhancement
to FCM clustering for cytology image segmentation.
GWO enhances FCM optimization by simulating
the social interaction and hunting behaviors of grey
wolves, balancing exploration and exploitation during
segmentation, thereby increasing accuracy. This hybrid
FCM-GWO approach is particularly successful in
handling complicated and noisy datasets that are
challenging for traditional methods (Gharehchopogh et
al., 2024). In addition, Dorgham et al. (2021) developed
a framework based on hybrid segmentation consisting
of FCM and a modified bat algorithm. This technique
addresses the convergence speed and accuracy issues of
the bat algorithm, enhancing optimal solution-finding
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Table 1. Comparative analysis of traditional, advanced, and hybrid image segmentation techniques

Category | Technique Description Strengths Limitations References
Traditional | Morphology-based | Utilizes shape Good for Struggles with irregular | Arabi and Zaidi
techniques characteristics for spot | well-defined or overlapping shapes (2021)
identification shapes
Region-growing Expands regions based | Simple and May produce Bal et al. (2020)
on seed points and intuitive fragmented results in
pixel intensity noisy conditions
Threshold-based Segments images Straightforward Requires manual Biju and Mythili
based on intensity and easy to tuning; sensitive to (2012)
thresholds implement variations
Clustering Partitions images into | Computationally Requires a predefined Cruz et al. (2021)
(K-means) clusters based on pixel | efficient number of clusters;
intensity struggles with varying
spot sizes
Advanced | Active contour Delineates object Effective for Sensitive to Jiang et al. (2021)
techniques | models (snakes) boundaries by well-defined initialization and noise;
evolving curves boundaries requires extensive
preprocessing
Watershed Segments images by Can achieve fine Prone to Farshi et al.
transforms treating intensity as a | segmentation over-segmentation; (2020)
topographical surface requires post-processing
Support vector Classifies pixels based | High accuracy Depends on Emam et al.
machines on training data with good data high-quality labeled (2023)
data
Deep learning Uses neural networks | High accuracy and | Requires large datasets | Gharehchopogh
(CNNs, U-Net, to learn features and adaptability and computational and Ibrikci (2024)
etc.) segment images resources
Hybrid Fuzzy C-mean Integrates genetic Improves Complex and Jiang et al. (2021)
approaches | (FCM) + genetic algorithms with FCM | clustering computationally
algorithm for optimization precision and intensive
reliability
FCM-+particle Combines FCM Enhances Can be complex to Dhruv et al.
swarm with PSO to refine clustering implement (2023)
optimization clustering results performance and
(PSO) accuracy
FCM+gray wolf Uses the gray wolf Balances Requires careful Farshi et al.
optimization algorithm to optimize | exploration and parameter tuning (2020)
FCM clustering exploitation
FCM+modified Combines FCM Enhances May require extensive | Gharehchopogh
bat algorithm with the modified convergence speed | parameter adjustments | and Ibrikci (2024)
bat algorithm and accuracy
for improved
segmentation
FCM+modified Further explores FCM | Shows Similar to previous Emam et al.
bat algorithm with the modified bat | effectiveness hybrids; might need (2023)
(alternate study) algorithm across different parameter tuning
scenarios
Ensemble Combines multiple Leverages the Can be complex to Biju and Mythili
approaches segmentation strengths of implement and manage | (2012)
techniques to improve | diverse methods
performance

capabilities. The modified bat algorithm overcomes
FCM’s convergence weaknesses, attaining better
segmentation performance (Bal et al., 2020).

Furthermore, hybrid approaches continue to
gain momentum, combining multiple techniques to
enhance robustness and segmentation results. These
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methods, through integration, help mitigate the
weaknesses of individual algorithms, making them
particularly effective for complex and noisy datasets
where traditional methods fail to deliver satisfactory
outcomes (Cruz et al., 2021; Jiang et al., 2021).

2.2. Progress on Hybrid Image Segmentation
Methods

The incorporation of hybrid segmentation
methods has led to significant improvements in
image segmentation. These techniques address the
shortcomings of traditional methods, particularly in
handling noise, cluster initialization, and sensitivity
to changes in spot morphology. Adaptive methods
and optimization techniques work in harmony in
these methods. Continued research in this area will
drive further innovation and refinement that deal with
intricate datasets, expanding the potential for image
segmentation in both biomedical and agricultural
research (Dhruv et al.,, 2023; Gharehchopogh and
Ibrikei, 2024). Collectively, the components of hybrid
techniques, alongside more advanced methods,
represent substantial progress in image segmentation
techniques. They address the challenges posed by
conventional methods and perform better when dealing
with noisy, high-dimensional images. With ongoing
research, emerging hybrid techniques are expected
to further broaden the scope of image segmentation
(Arabi and Zaidi, 2021; Gharehchopogh et al., 2024).

3. Proposed Methodology

In the proposed hybrid framework, BEMD and
GA contribute distinctly to the overall methodology
by addressing specific challenges in microarray
image segmentation. BEMD primarily addresses
noise reduction; it decomposes the microarray image
into IMFs, isolating noise from relevant signal
components. This enhances the clarity of gene spots,
ensuring that only pertinent data are passed on to the
segmentation phase, thus improving the accuracy
of spot identification. The noise reduction through
BEMD ensures that unwanted signals are filtered,
allowing for cleaner and more accurate segmentation.
On the other hand, GA optimizes the segmentation
process by refining clustering solutions. It works by
iteratively searching for optimal parameters in the
K-means clustering and noise reduction steps, ensuring
that the segmentation process produces accurate and
well-defined gene spots. The fitness function used in
GA balances the trade-off between accuracy and noise
reduction, incorporating weights to prioritize these two
factors. By combining BEMD for noise elimination
with GA for optimal solution searching, the hybrid
framework efficiently addresses the complexity of
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microarray images, improving segmentation accuracy
and processing efficiency. Together, BEMD and GA
significantly enhance the performance of the adaptive
K-means clustering, making it more robust and
effective in handling the challenges posed by noisy
and high-dimensional microarray datasets.

3.1. Noise Reduction

The presence of noise in microarray images can
significantly impede precise gene spot identification.
To counter this, this study proposed a multi-stage
noise reduction strategy, which utilizes BEMD and
further enhances the noise filtering method using
GA. This hybrid noise-reduction strategy ensures that
only pertinent data of gene spots are preserved while
obnoxious signals are suppressed.

3.2. Adaptive K-means Clustering

As with all traditional K-means -clustering
methods, the number of K clusters must be specified
in advance, which poses a limitation when working
with variable datasets such as microarray images. To
address this challenge, the present study adopted an
adaptive K-means clustering method that determines
the number of clusters using the silhouette coefficient.
The silhouette score, S(i), is defined as:

S =D =ald)

=7 7 1
max(a(i), b(i)) W

Input the microarray
image

|

Find Extrema (Maxima/Minima)

L

Get Mean Envelope & Subtract

|

Residual Signal = Noise

Fig. 4. Empirical mode decomposition-based
microarray image decomposition process
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Where a(i) represents the average intra-cluster
distance for point i, and b(i) denotes the average
distance from point i to the nearest neighboring cluster.

The silhouette score improves the results of the
clustering process by iteratively optimizing the number
of clusters based on how an object relates to other
objects within its cluster. Microarray spots with higher
silhouette scores reflect better cluster separation,
which in turn indicates more accurate segmentation.

3.3. BEMD

The BEMD noise reduction method involves
decomposing a microarray image into IMFs.
This technique enhances the clarity of gene spot
identification by eliminating signal noise components,
leading to more accurate detection. The decomposition
can be represented mathematically as:

F(x,y) =2;IMF(x,y)+r(x,y) (2)

Where f(x,y) is the original microarray image,
IMF (x,y) represents the i-th IMF, and r(x,y) is the
residual signal after decomposition.

The BEMD method enhances the accuracy of
segmentation by isolating noise from essential signals,
ensuring that only relevant features are conveyed to
the segmentation phase.

Fig. 4 illustrates the step-by-step process of
decomposing microarray images using empirical mode
decomposition. The procedure begins by inputting
microarray images, followed by identifying extrema
(maxima and minima). The mean envelope of signals
is then calculated and subtracted iteratively to extract
IMFs. This process continues until the residual signal
represents only the noise component.

3.4. GA for Noise Reduction

To further enhance segmentation, GA was chosen
due to its effectiveness in refining optimal solutions
within vast complex spaces. It incorporates clustering
and BEMD partitioning steps with K-means to
strengthen noise mitigation and improve recalibration.
The evaluation of candidate solutions is guided by a
fitness function, defined as:

Fitness = w, x Accuracy + w, x (1-Noise level)  (3)

Where w, and w, are weights representing
the importance of accuracy and noise reduction,
respectively. Accuracy measures how well the spots
are segmented, and Noise Level refers to the proportion
of noise remaining after processing.

The fitness function balances the trade-off
between accuracy and noise reduction, ensuring that

the segmented gene spots are both well-defined and
free from unwanted noise.

3.5. Bat Algorithm for Clustering Optimization

To further improve segmentation, we added the
bat algorithm, which is a nature-inspired metaheuristic
optimization technique. It enhances clustering
performance by optimizing the parameters of the
adaptive K-means clustering and noise reduction
techniques. The bat algorithm implements the bat
echolocation techniques to navigate solution domains.
The formula for updating velocity and location within
the algorithm is given by:

v =y (xl = x) f, @

i

X =+ () ®)

Fig. 5. Hybrid microarray image segmentation
framework

Table 2. Clustering method performance

Clustering method | Accuracy (%) | Silhouette score
Traditional K-means 85 0.45
Adaptive K-means 95 0.75
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where V! is the velocity of the i-th bat at time ¢,
x; is the current position, f;is the frequency parameter,
and x, represents the global optimal position.

3.6. Hybrid Approach

The proposed hybrid approach utilizes adaptive
K-means clustering for dynamic segmentation of gene
spots and combines BEMD and GA for optimizing
segmentation parameters (Fig. 5). Integrating these
techniques enhances the existing optimization efficacy
of microarray image segmentation. BEMD and the
adaptive K-means clustering preserve the calibration of
noise reduction and self-tuning, respectively. Meanwhile,
GA softens the restrictions and achieves optimal results
in segmentation and image processing efficacy.

4. Results

The proposed framework was executed in
Python, employing appropriate libraries to enhance
its implementation. Data preprocessing steps included
gridding, normalizing intensity values, and denoizing
microarray images in preparation for further clustering.
Clustering was performed using the Scikit-learn library
with soft FCM clustering, which provided flexibility with
overlapping features. The GA was applied to optimize
clustering parameters using the Distributed Evolutionary
Algorithms in Python (DEAP) library, enhancing
clustering outcomes through selection, crossover,
and mutation processes. Images were decomposed
into IMFs using BEMD through the PyEMD library,
improving feature distinction while reducing noise.
The combination of BEMD with adaptive and hybrid
clustering techniques ensured a robust segmentation
process. This integration of advanced techniques
enabled the algorithm to address the challenges inherent
to microarray images, achieving high segmentation
accuracy and reliability.

4.1. Segmentation Accuracy

Our proposed adaptive and hybrid framework showed
a significant improvement in segmentation accuracy
compared to prior approaches (Table 2). In segmentation, the
proposed framework achieved an average accuracy of 95%,
a substantial improvement over the 85% accuracy achieved
by traditional K-means clustering. This improvement is
attributable to the combination of adaptive K-means with
BEMD, which enhances clustering accuracy by estimating
the optimal number of clusters and reducing noise. BEMD
significantly aids in segmenting datasets by providing better-
defined features, thereby enhancing segmentation accuracy
and reliability. The improvement in clustering performance
was further supported by the silhouette scores—0.75 for the
adaptive K-means method compared to 0.45 for traditional
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Fig. 6. Cluster analysis using the adaptive K-means
approach. Green points indicate data samples
assigned to clusters, while purple stars denote the
cluster centroids identified by the algorithm. The
improved separation between clusters demonstrates
the effectiveness of the adaptive method compared to
traditional K-means
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Fig. 7. Noise reduction comparison (A) before and
(B) after applying bi-dimensional empirical mode
decomposition

Table 3. Noise reduction metrics

Metric Before | After | Improvement
BEMD | BEMD (%)

Noise level (%) 25 5 80

Signal-to-noise 10 30 200

ratio (dB)

Abbreviation: BEMD: Bi-dimensional empirical mode

decomposition.

K-means (Fig. 6). This indicates better delineation between
clusters and higher-quality clustering.

4.2. Noise Reduction

Combining BEMD with GA significantly
improved noise suppression (Table 3). Microarray
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Table 4. Comparison among hybrid clustering models

Method Accuracy | Noise reduction | Execution | References
(%) (%) time (s)

Proposed hybrid algorithm 95 80 1.2 This study
Hybrid FCM+GA 90 70 1.5 Biju and Mythili (2012)
Hybrid FCM+PSO 92 75 1.8 Lang et al. (2023)
FCM+GWO 93 78 2.0 Maryam et al. (2022)
FCM+modified bat algorithm 91 72 1.7 Lee et al. (2021)
Abbreviations: FCM: Fuzzy C-means; GA: Genetic algorithm; GWO: Gray wolf optimization; PSO: Particle swarm optimization.

images were initially recorded with a noise level of
25%. After applying BEMD, the noise level decreased
to 5%, an 80% reduction. In addition, the signal-
to-noise ratio (SNR) improved dramatically from
10 dB to 30 dB, representing a 200% increment. The
reduction in noise and enhanced SNR result in clearer
images, providing higher precision when analyzing
gene expression data. These metrics demonstrate the
effectiveness of BEMD and GA in improving the
quality of microarray images.

Fig. 7 compares microarray images before and
after the application of BEMD. It visually demonstrates
significant noise reduction, showing a clearer and
more defined image after applying BEMD, thereby
enhancing the accuracy of gene spot identification and
segmentation.

4.3. Execution Time

Adding image processing to our proposed hybrid
framework enhanced the efficiency. The average time
for processing a single microarray image was 1.2 s.
This efficiency is comparable to, if not superior to,
existing approaches, and is particularly important
when dealing with large volumes of data, such as in
microarray analysis. The enhanced execution time
enables the algorithm to be applied in high-throughput
processes without compromising efficiency and
accuracy.

4.4. Comparison with Traditional Methods

Traditional methods, such as region-based
and threshold-based segmentation methods,
are often sensitive to noise and struggle with
the wvariability in spot morphology, leading to
inaccuracies in gene expression data analysis. Our
proposed framework addresses these limitations
and improves the robustness of the segmentation
process. For example, region-based segmentation
has been widely used in similar applications
but significantly suffers from noisy conditions,
resulting in poor performance (Biju and Mythili,

51

2012; Gharehchopogh et al., 2024). Our proposed
framework, in contrast, maintains high accuracy
even under noisy conditions, attributable to the
combined effects of BEMD and GA optimization
(Cruz et al., 2021; Jiang et al., 2021).

4.5. Comparison with Other Recent Hybrid
Clustering Models

Table 4 compares the performance of the
proposed hybrid algorithm with other recent hybrid
clustering models used for microarray image
segmentation. Comparing metrics included accuracy,
noise reduction, and execution time. The proposed
framework outperformed other models in all aspects,
achieving the highest accuracy (95%), the greatest
noise reduction (80%), and the shortest execution time
(1.2 s). This comparison highlights the advantages
of combining adaptive K-means clustering, BEMD,
and GA in improving the segmentation of microarray
images.

4.6. Applications in Medical and Agricultural
Research

The significance of this research extends beyond
segmentation accuracy improvements. In medical
science, microarray image segmentation is vital
for gene expression profiling, particularly in cancer
diagnostics, where minor changes in gene expression
can drastically affect diagnostic and therapeutic
approaches (Farshi et al., 2020; Gharehchopogh and
Ibrikei, 2024). Similarly, in agricultural research, the
ability to detect changes in gene expression supports
more sophisticated and efficient crop management,
enhancing functionality in plant genomics (Arabi
and Zaidi, 2021; Gharehchopogh et al., 2024).
Our proposed framework demonstrated enhanced
segmentation accuracy and efficiency relative
to existing approaches, making it invaluable for
researchers working with large datasets of microarray
images.
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5. Conclusion

In this work, we proposed a novel hybrid clustering
algorithm that combines adaptive K-means with BEMD
and GA to address the limitations of traditional microarray
image segmentation methods. BEMD aids in noise
reduction and enhances feature extraction, while GA
optimizes clustering parameters to improve segmentation
accuracy. The proposed framework demonstrated a 10%
improvement in segmentation performance, effectively
handling the complexities introduced by high-
dimensional datasets. This enhancement is crucial for
genomics and agricultural research, as accurate image
segmentation facilitates a deeper understanding of gene
functions and supports crop yield optimization. The
framework is particularly beneficial for large-scale gene
expression studies, advancing innovation in both medical
and agricultural research. Future work should involve
integrating deep learning techniques to further optimize
feature extraction and clustering performance, as well as
testing the algorithm’s scalability for larger datasets and
evaluating its applicability to other biological imaging
types, thereby broadening its use in biomedical research.
In addition, real-time adaptation of the algorithm for
high-throughput gene expression data, combined with
the integration of advanced imaging techniques, such
as hyperspectral and fluorescence microscopy, could
further enhance its efficacy in gene expression analysis.
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Abstract

Wireless sensor networks (WSNs) face critical challenges in fault detection that can compromise their quality of service
in dynamic environments. This study introduces an integrated framework that enhances fault detection by combining
advanced noise filtering, optimized feature selection, and a robust deep learning (DL) model. The framework employs
a dynamic noise filtering technique with adaptive thresholding to effectively remove noise while preserving essential
data integrity. Complementing this, the rank-based whale optimization algorithm refines feature selection, boosts
model performance, and reduces computational demands. At its core, the hierarchical attention-based DL model
utilizes temporal convolutional layers, long short-term memory units, and hierarchical attention mechanisms to capture
both short-term and long-term dependencies in the data. Experimental evaluations on the WSN dataset demonstrate
outstanding performance, with a precision of 0.98, a recall of 0.99, an F1-score of 0.98, and an area under the curve
of 0.99 for all fault classes. Comparative analysis reveals that this framework outperforms existing approaches in
terms of accuracy, sensitivity, specificity, and computational efficiency. Overall, the proposed solution improves fault
detection and enhances network reliability, minimizes false alarms, and extends the operational lifespan of WSNss,
offering a scalable approach for mission-critical applications in healthcare, environmental monitoring, and industrial
automation.

Keywords: Dynamic Noise Filtering, Hierarchical Attention-based Deep Learning, Long Short-term Memory, Quality
of Service, Rank-based Whale Optimization Algorithm, Wireless Sensor Networks

1. Introduction (Yakubu and Maiwada, 2023). Data manipulation,
denial of service attacks, and illegal access are just

Wireless sensor networks (WSNs) are a game- it )
a few security risks that WSNs face (Nimbalkar et

changing technology that allows gathering, processing,

and sending data from dispersed sensor nodes. These al., 2023). These dangers are more likely to affect
nodes can perceive and monitor their surroundings WSNss because of their dispersed and wireless nature.
since they are outfitted with various sensors and Protecting the privacy, availability, and integrity of
communication tools (Gebremariam et al., 2023). data in WSNs is essential to preserving these networks’
Environmental assessment, smart cities, healthcare, credibility and dependability (Alghamdi et al., 2023).
and industrial automation are just a few industries that The goal of intrusion detection, a crucial part of WSN
use WSNs. Their capability to gather data remotely security, is to identify and stop harmful activity on the
and in real-time from inaccessible or dangerous network (Heidari and Jabraeil, 2022). Conventional
regions enables effective data-driven decision- rule-based intrusion detection systems frequently use
making (Chataut et al., 2023; Talukder et al., 2024). predefined signatures or criteria, which are ineffective
The sensitive nature of data being transferred and the in identifying more complex assaults (Sezgin and
possibility of network flaws make WSN security crucial Boyaci, 2022). One method that has shown promise
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for WSN intrusion detection is machine learning (ML).
ML algorithms provide proactive and adaptive security
measures by learning from past data and spotting
abnormalities or patterns suggestive of possible
breaches (Talukder et al., 2023). Intelligent intrusion
detection systems may be developed in WSN owing
to ML techniques. These algorithms can distinguish
between benign and malicious behavior, analyze vast
volumes of data, and identify odd trends (Ghazal,
2022). By extracting useful information from intricate
WSN datasets, ML techniques such as decision trees,
random forests, neural networks, and gradient boosting
techniques can increase the precision and efficacy of
intrusion detection systems (Talukder et al., 2022).
Internet of Things (IoT) systems have unique
characteristics, such as restricted bandwidth capacity
(Qaiwmchi et al, 2020), limited energy, heterogeneity,
global connection, and ubiquity, which make typical
intrusion detection system solutions inadequate or
less effective for their security. Deep learning (DL)
and ML-related approaches have earned a reputation
for their efficacious use in identifying network
vulnerabilities, particularly those on IoT networks
(Pandey et al., 2022). WSNs do not directly employ
traditional network intrusion detection methods
because of their poor computing and communication
capabilities. Several WSN intrusion detection
researchers can currently use ML algorithms to examine
traffic data. Due to the WSN network’s growing user
base and network size, it generates high-dimensional
traffic data. Traditional ML models struggle with low
feature extraction and detection accuracy, making them
unsuitable for an application environment (Almomani,
2021). The detection model’s precision can be
increased using DL instead of ML models for intrusion
detection systems, as they can learn the data flow
features and reduce the computational load (Sharmin
et al., 2023). This study aims to develop an integrated
fault detection framework for WSNs that improves
data reliability and overall network performance under
dynamic conditions. The framework is designed to
address challenges such as noise interference and high
computational demands in fault detection based on the
following contributions:
(i) Introduces a dynamic noise filtering (DNF)
technique with adaptive thresholding to remove
noise from sensor data while preserving critical
information
Utilizes the rank-based whale optimization
algorithm (RWOA) to select the most relevant
and non-redundant features, thereby boosting
model performance and reducing computational
complexity
Develops a hierarchical attention-based DL
(HADL) model that integrates temporal
convolutional layers, long short-term memory

(i)

(iii)
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(LSTM) units, and hierarchical attention
mechanisms to capture both short-term and
long-term dependencies in the data, leading to
superior fault detection accuracy

Demonstrates exceptional performance on the
WSN dataset (WSN-DS) with precision, recall,
Fl-scores, and area under the curve (AUC)
values of 0.99 or higher, outperforming existing
methods in accuracy, sensitivity, specificity, and
computational efficiency.

(iv)

This study provides a systematic overview
of a research project addressing fault detection
challenges in WSNs. It begins with an introduction;
reviews existing studies; proposes a novel framework
integrating noise filtering, feature optimization, and a
hierarchical DL model; compares the approach against
existing methodologies; and concludes with key
contributions and potential future directions.

2. Related Work

The literature survey section provides a
comprehensive overview of existing approaches in
fault detection for WSNs. It examines the evolution
of techniques in noise filtering, feature selection, and
DL, identifying the strengths and limitations of current
methodologies.

Tan et al. (2019) introduced an intrusion
detection approach that leverages a random forest
classifier enhanced by the synthetic minority
oversampling technique to address dataset imbalance,
improving accuracy from 92.39% to 92.57%. In a
similar vein, Rezvi et al. (2021) employed a data
mining framework to discern various types of denial of
service attacks by comparing several classifiers—such
as K-nearest neighbors (KNN), naive Bayes, logistic
regression, support vector machine, and artificial
neural network—with their findings indicating that
artificial neural network and KNN yielded superior
accuracies of 98.56% and 98.4%, respectively. Meng
et al. (2022) proposed an intrusion detection method
tailored for resource-constrained WSNSs, integrating a
light gradient boosting machine with recursive feature
elimination, Shapley additive explanations analysis,
and an iterative tree model, in combination with the
synthetic minority oversampling technique-Tomek
balancing technique, which resulted in detection rates
exceeding 99% for all attack types and a substantial
reduction (46%) in modeling time.

Singh et al. (2020) developed a fuzzy rule-based
intrusion prevention system that classifies sensor
nodes into risk categories based on metrics, like packet
delivery ratio, energy consumption, and signal strength,
achieving an accuracy of 98.29% and effectively
neutralizing malicious nodes. Alruhaily et al. (2021)
designed a multi-tier intrusion detection architecture
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incorporating a real-time naive Bayes classifier at
the network edge and a cloud-based random forest
classifier for comprehensive packet analysis, with their
system delivering high detection accuracies across
various attack categories. Complementing these efforts,
Chandre et al. (2022) employed a convolutional neural
network within a DL framework to detect and prevent
intrusions by extracting robust feature representations
from extensive labeled datasets, reaching an accuracy
rate of 97%.

Further advancing the field, an optimized
collaborative intrusion detection system was proposed
by Elsaid and Albatati (2020) using an updated
artificial Bee colony optimization (BCO) algorithm
that enhanced resource efficiency and detection
accuracy while integrating a weighted support vector
machine to minimize false alarms through effective
coordination among base stations, cluster heads, and
sensor nodes. Addressing data imbalance in WSN
cyberattacks, Putrada et al. (2022) demonstrated that
extreme gradient boosting outperformed decision
trees and naive Bayes by achieving the highest AUC
values across multiple attack classes. Ravindra
et al. (2023) introduced an innovative anomaly
detection technique that utilizes data compression
and dynamic thresholding, powered by an enhanced
extreme learning machine coupled with an enhanced
transient search arithmetic optimization (ETSAO)
algorithm, which successfully reduced computational
overhead and achieved a 96.90% accuracy on the
WSN-DS. Finally, Alruwaili et al. (2023) presented
the red kite optimization algorithm (RKOA) with
an average ensemble model for intrusion detection
(AEID) methodology for IoT-based WSNs, which
incorporates feature selection through RKOA, min-
max normalization, and an average ensemble learning
model with hyperparameter tuning using a Lévy-fight
chaotic whale optimization technique, resulting in an
improved accuracy of 98.94%.

While current methodologies effectively
address individual aspects such as detection
accuracy, computational efficiency, and class

imbalance, they seldom integrate noise filtering,
feature selection, and DL-based fault detection into
a unified framework. Moreover, many approaches
do not fully exploit hierarchical DL architectures
capable of capturing both short-term and long-term
temporal dependencies inherent in sensor data. This
gap underscores the need for a comprehensive and
scalable solution that simultaneously enhances
network reliability, minimizes false alarms, and
extends the operational lifespan of WSNs, thereby
offering robust performance in dynamic and
resource-constrained environments.
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3. Proposed Methodology

The proposed methodology introduces an
advanced framework (Fig. 1) for fault detection
in WSNs, addressing the critical challenges of
noise interference, suboptimal feature selection,
and inaccurate fault classification in dynamic
environments. By integrating a suite of cutting-edge
techniques, the approach ensures enhanced fault
detection accuracy and robust network performance
while optimizing computational efficiency. The
methodology begins with DNF using adaptive
thresholding, a real-time noise mitigation strategy that
dynamically adjusts thresholds based on statistical
analysis of noise patterns in sensor data. This ensures
the preservation of critical fault-indicative information
while filtering out irrelevant fluctuations, even under
varying environmental conditions. This adaptive
mechanism significantly enhances the data quality
fed into the fault detection pipeline. To extract the
most relevant and non-redundant features, an RWOA
was utilized. This novel metaheuristic optimization
approach combines the global exploration capabilities
of WOA with feature relevance ranking using mutual
information. By balancing classification accuracy
and feature dimensionality, the RWOA ensures the
selection of an optimal, compact feature set, reducing
computational overhead while maintaining precision.

For fault classification, the proposed framework
leverages an HADL model. This multi-layered
architecture incorporates temporal convolutional layers
to capture short-term patterns and anomalies, followed
by LSTM layers to model long-term dependencies in
time-series data. The centerpiece of HADL is its dual-
level hierarchical attention mechanism, which prioritizes
critical features within each time step and across the
sequence, maximizing interpretability and decision
accuracy. The final classification layer delivers precise
fault predictions, adapting to the complexities of real-
world WSN scenarios. The proposed methodology
establishes a high-performance fault detection framework
by synergistically combining noise filtering, feature
optimization, and a DL-based classification model. This
approach not only enhances the quality of service but
also ensures the scalability, reliability, and efficiency
of WSNs in mission-critical applications. Integrating
adaptive mechanisms and optimization-driven feature
selection represents a significant advancement in fault
detection technology, paving the way for more resilient
and intelligent WSN deployments.

3.1. DNF Technique with Adaptive Thresholding

Initially, a DNF technique with adaptive
thresholding effectively filters out noise while
preserving critical data for fault detection in WSNss.
First, the technique continuously monitors incoming
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Fig. 1. Flow diagram of the proposed methodology
Abbreviations: HADL: Hierarchical attention-based deep learning; TDMA: Time-division multiple access

sensor data to assess the real-time noise levels and
distribution patterns. It then calculates statistical
properties, such as the mean and standard deviation
of the noise, across a sliding window of recent data.
Based on these calculations, the method dynamically
adjusts the noise threshold, increasing it during high-
noise periods to avoid false positives and lowering
it when data quality improves to ensure that subtle
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faults are not missed. This adaptive threshold is then
applied to filter out noise, allowing only data points
that exceed an adjusted threshold to pass through
for further processing. The process is repeated
continuously, ensuring the filtering adapts to changing
network conditions, resulting in a more accurate and
reliable dataset for subsequent analysis.

DNF with adaptive thresholding is a technique
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used to improve the data quality in systems like WSNSs,
where data can be corrupted by noise due to various
factors like sensor malfunctions, environmental
interference, or communication issues. This method
enhances the signal-to-noise ratio by removing noise
without losing important information. This component
refers to identifying and reducing noise in the data in
real-time or dynamically, based on varying conditions.
The noise filtering adapts to the type of noise and
the changing characteristics of the signal. In a WSN,
sensor readings can be affected by several types of
noise, such as random fluctuations or environmental
disturbances. DNF identifies and selectively removes
these anomalies in the data, ensuring that useful
signals are preserved.

Thresholding involves setting a limit (threshold)
above or below which the data is considered noise or
valid. Adaptive thresholding adjusts this threshold
based on the current state of the data. In a dynamic
environment, where sensor data characteristics change
over time, a static threshold might not work effectively.
The adaptive threshold is recalculated periodically or
based on specific criteria, such as the variance of the
data, the signal strength, or statistical measures of the
data distribution. For example, if the sensor data shows
sudden spikes or sharp drops (indicative of noise), the
threshold can be adjusted to treat these as noise and filter
them out. Conversely, when data becomes more stable
or predictable, the threshold can be widened to capture
a broader range of valid information. The algorithm for
DNF with adaptive thresholding is as follows:

(i) Step 1: The system continuously monitors
incoming sensor data for unusual patterns,
sudden spikes, or deviations from expected
values, characteristic of noise

Step 2: The system uses adaptive techniques to
determine a dynamic threshold that reflects the
current data distribution, variability, or other
environmental factors. The threshold changes
are based on observed conditions, such as the
variance of the signal or the presence of unusual
outliers

Step 3: Data points outside the adaptive threshold
are flagged as noise and discarded or replaced.
The remaining data is preserved for further
processing and analysis

Step 4: By dynamically adjusting the threshold,
the method ensures that important or meaningful
data is not discarded while filtering out noise. This
allows for better quality input for downstream
analysis, such as fault detection in WSNS.

(i)

(iii)

(iv)

Removing noise without discarding useful data
improves the quality of sensor readings, leading to
better analysis and decision-making. The adaptive
threshold can adjust to different types of noise or
changes in the network conditions, making it more
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robust in dynamic environments. In systems like fault
detection, reducing noise ensures that only actual faults
are detected, minimizing false alarms. In summary,
DNF with adaptive thresholding ensures that the data
used for analysis in WSNs or similar systems is of high
quality, with noise effectively removed based on real-
time conditions.

3.2. RWOA Technique

This research presents an RWOA to improve
the efficacy of feature extraction. It uses the latest
developments in  metaheuristic ~ optimization
techniques to find the most pertinent features for defect
identification. To start, the WOA searches the feature
space to optimize a fitness function that strikes a
compromise between feature set size and classification
effectiveness. The algorithm effectively explores the
search space, avoiding local optima and locating the
optimal solution globally by imitating the bubble-net
feeding method of humpback whales. Features with
stronger correlations are given larger weights. In
parallel, the dependence of each characteristic on the
goal variable (i.e., defect or normal state) is evaluated
using mutual information. The selected features from
the WOA are then refined using the mutual information
ranking, ensuring that only the most informative
and non-redundant features are retained. This hybrid
approach significantly improves the robustness and
accuracy of the fault detection model by ensuring that
the extracted features are both optimal in relevance
and minimal in quantity, reducing the computational
burden.

One of the popular population-based
metaheuristic  algorithms  for solving  global
optimization problems in various fields is the WOA
algorithm, developed by Mirjalili and Lewis (2016).
The humpback whale’s natural hunting behavior
serves as the model for this program. At the water’s
surface, humpback whales hunt by focusing on schools
of krill or tiny fish. To encircle and seize their prey,
they form characteristic bubbles in a spiral pattern.
The whales descend and swim to the water’s surface,
creating spiral bubbles around the prey. The WOA
uses three tactics to mimic whale behavior: (i) spiral
bubble-net attacking (exploitation phase), (ii) hunting
for prey (exploration phase), and (iii) surrounding the
target. X =(x;,,x/,,...,X ,) represents the location
of the i whale at iteration ¢, where i = 1,2,..., Nand N
and D represent the whale population and the problem’s
dimensions, respectively.

3.3. Encircling Prey Strategy

Whales can track down and enclose their prey.
The ideal choice for whales in WOA is the target prey
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or a nearby location inside the search area. Eq. (1) is
used by other whales to update their location as they
try to approach the ideal agent during prey encirclement.
This equation is constructed with ¢ representing the
current iteration, X, representing the i whale’s
location for the current iteration, and X* representing
the position vector of the best solution, thus far, which
is updated in each iteration if a better solution is
discovered.

X" =X"-4-D (1)
D:|C><X*’ - X! )

where D stands for the distance between the
whale and the prey X*', which is established by Eq.
(2). I denote the absolute value, 4 and C represent
coefficient vectors that are established using Egs. (3)
and (4).

A=2%xXaxr-a 3)

C=2xr 4)

a:z_p{__é__j s)
Maxlter

According to Eq. (5), the parameter r in Egs. (3)
and (4) are random numbers in the interval, whereas
Eq. (3) declines linearly from 2 to O repetitions. The
values 7 and Max,, are used in Eq. (5) to represent the
current iteration and the total number of iterations.
Through the use of the parameter a, the whales are
gradually brought into the surrounding scope.

3.4. Spiral Bubble-net Attacking Strategy

Humpback whales use a bubble net to spiral
toward their prey and corner them. Two strategies are
used to mathematically represent this strategy: spiral
updating position and shrinking encircling.

3.4.1. Shrinking encircling method

In Eq. (3), this tendency is reflected by reducing
the value of the convergence variable a. Furthermore,
the alternate range of A fluctuation is linearly lowered
from 2 to 0, utilizing the parameter a through iterations.
In other words, 4 is a random value belonging to the
interval [—a,a].

3.4.2. Spiral updating position method

First, this method calculates the distance between
whales X/ using Eq. (6); X*'is the best result thus far.
Next, a spiral migration from its present location
towards an ideal solution is described using Eq. (7). In
these calculations, the logarithmic spiral shape is
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determined by a constant parameter, b, and a random
variable, /, between [—1,1].

D =|x" - x| (6)

X' =D xe"” xcos(2rl)+ X (7)

The logarithmic spiral form is determined by
a fixed parameter, b and a random value, /, that falls
between [—1,1]. The humpback whale swims in WOA,
spiraling around its prey in a tight circle. The spiral
model or the diminishing encircling method is the two
options the whale chooses for changing its location
during the optimization phase. The mathematical
model is defined by Eq. (8), where p is a random
number in [0, 1].

X" -4AxDi 0.5
D ®)
D xe”" xcosQe)+ X" if p=0.5
3.5. Searching for Prey Strategy
Whales employ this strategy to increase

population diversity and seek the problem space
for uncharted territory. A randomly selected search
agent updates the position of each whale. To avoid
being caught in a local minimum, the search agent
is pushed away from a randomly chosen humpback
whale using the parameter 4. Eq. (9) is employed for
exploration [31].

—AxD
—X[’|

X=X

rand

)
D:|C><X

rand

here 4 and C are calculated using Egs. (3)
and (4), and X is a random position vector in the
search space chosen from the available whales in the
population.

After N, when whales are randomly distributed
over the search space, the association objective function
value is determined, as seen in the WOA flowchart in
Fig. 2. When the initial values of the control parameters
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Fig. 2. Area under the curve (AUC) of the classes
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are altered, the optimization begins with the present
iterations. At each iteration, the value of the parameter
p is then evaluated. Eq. (7) specifies the spiral updating
position method used by whales when p > 0.5. Whales
update their location when p < 0.5 using the encircling
prey strategy (Eq. [1]) if |[4|<1 and the hunting for prey
strategy (Eq. [9] if |4[>1). Subsequently, the fitness
and viability values of the newly gained positions are
computed. Next, the ideal solution is updated, and
WOA is ultimately ended.

The WOA is based on humpback whale
hunting behavior, mimicking the bubble-net strategy.
It involves exploration and exploitation, with
whales randomly moving in search of space and
using shrinking encircling mechanisms and spiral
movements. However, WOA can face challenges like
premature or slow convergence due to poor exploration
and exploitation balance. The rank-based method
is introduced in RWOA to enhance the population
selection mechanism during the optimization process.
This method changes how whales are selected for
exploration and exploitation by considering their rank
in the population rather than selecting them randomly
or with equal probability.

3.5.1. Rank assignment

After evaluating the fitness of all candidates
(whales), they are ranked based on their fitness values
(i.e., solutions with lower objective function values
are ranked higher if the goal is minimization). Each
individual in the population is assigned a rank based
on their fitness, with the best solution (with the lowest
fitness) getting rank 1, the second-best getting rank 2,
and so on.

3.5.2. Probability-based selection

Instead of choosing individuals to update their
position randomly or based on fixed probabilities,
rank-based selection assigns higher probabilities
to individuals with better (lower) ranks. The better
individuals (those with better fitness) are more likely
to be selected for the exploitation phase, while the
worse individuals are more likely to be selected for the
exploration phase. A non-linear probability distribution
is often used, so the probability of selecting a whale
is inversely proportional to its rank. This ensures that
the algorithm focuses more on promising solutions
while maintaining some diversity by allowing worse
solutions to participate in the search process.

3.5.3. Exploration and exploitation

During the exploration phase, the worst-ranked
individuals (those with higher ranks) can move freely,

62

encouraging the algorithm to explore a wide area of the
search space. During the exploitation phase, the best-
ranked individuals (those with lower ranks) are more
likely to contribute to the search, refining the solution
by focusing on regions with promising results.

3.5.4. Fitness-based movement

The movement of each whale is influenced by its
rank. For example, for better individuals (lower ranks),
they will likely refine their position by getting closer to
the best solution. For worse individuals (higher ranks),
they are more likely to perform a broader search to
avoid premature convergence and encourage diversity.

3.5.5. Rank-based update of positions

The whale’s position update rule, which typically
involves a spiral or encircling mechanism, can also be
influenced by the whale’s rank. For example, whales
with better ranks (i.e., better solutions) may use the
shrinking encircling method with higher probabilities
to exploit reasonable solutions, while whales with
worse ranks can have a higher probability of using
random search to explore new regions of the search
space.

The RWOA improves convergence by ensuring
better solutions drive the search process, leading to
faster and more accurate results. It enhances diversity
by allowing worse solutions to explore the search space,
avoiding premature convergence, and maintaining
population diversity. RWOA also balances exploration
and exploitation, allowing for a broader search space
and reducing the risk of stagnation by encouraging
weaker solutions to explore new areas.

3.6. Hierarchical Attention-based DL Model

Finally, a HADL model is employed for fault
detection in WSNs, which starts with an embedding
layer that converts the raw input features from the
WSN-DS into dense vectors, capturing the underlying
patterns in a compressed form. Following this,
temporal convolutional layers detect patterns and
anomalies over short data sequences, focusing on how
features change over time. These layers help identify
sudden shifts or unusual trends that might indicate
faults. Next, recurrent layers, such as LSTM units,
capture long-term dependencies in the time-series data,
effectively modeling how earlier data points influence
future observations. The central innovation of HADL
is its hierarchical attention mechanism, which is
applied at multiple stages: first, to highlight the most
relevant features within each time step, and then to
focus on the most important time steps across the
sequence. This dual-level attention ensures the model
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prioritizes the most critical information for accurate
fault detection. Finally, the processed data is passed
through a fully connected layer, which integrates the
information from all previous layers and leads to a
softmax classification layer. This final layer provides a
probability distribution over the fault classes, allowing
the model to make precise and confident predictions
about the network’s state. This layered structure of
HADL ensures that the model effectively captures both
immediate and long-term patterns in the data, leading
to enhanced accuracy in detecting faults in WSNs.

The rank-based selection in RWOA improves
convergence by ensuring better solutions drive the
search process, leading to faster and more accurate
results. It enhances diversity by allowing worse
solutions to explore the search space, avoiding
premature convergence, and maintaining population
diversity. RWOA also balances exploration and
exploitation, allowing for a broader search space and
reducing the risk of stagnation by encouraging weaker
solutions to explore new areas.

Recurrent neural networks are widely known for
their ability to capture the dynamics of sequential data
when working with time-sequence data supplied by
monitoring systems. In contrast to a traditional neural
network, HADL neurons are reinforced by including
edges that span neighboring time steps. These links,
which are referred to as recurrent edges, create cycles
that are self-connected of a neuron to itself over time,
adding a temporal component to the model data space.
The behavior of a neuron with recurrent edges in a
basic recurrent network may be explained as follows
in Eq. (10):

ho = FOWh“D+Ux® + b )

30 = G(VhO+b) (10)

where A® represents the hidden layer activation
at time ¢, A“" represents the previously hidden
representation, and x (#) represents the input layer’s
current input. The input-to-hidden, hidden-to-hidden,
and hidden-to-output connections are parametrized
by the weight matrices W, U, and V, respectively,
within the HADL. The output layer and hidden
layer bias parametersb, and b, allow offset learning.
The two layers’ activation functions are F and G,
respectively. The recurrent neural network’s output
is ». In contrast to the propagation between layers,
which is cyclic, the data propagation is one-way in
the time direction when the network is unfurled from
left to right. The distinction lies in the weights (W)
being shared between time steps. The network may
therefore be trained across several time steps using a
backpropagation approach. As t2—-tl grows in size, the
input’s contribution to time step t2 will either move to
infinity or decay to zero since the weights are the same
for all time steps. The loss gradient will also either
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burst or decay to the input, depending on the activation
function f and whether [¥] > 0 or | W|<O0.

In the HADL method, every neuron in the hidden
layer is substituted by a memory cell architecture with
a core node known as the state unit s(*). This model’s
architecture is similar to that of a typical recurrent
neural network with a hidden layer. Like a typical
neuron in a hidden layer, the cell has external outputs
to the next time step and the layer below, as well as
external inputs from the previous layer and the prior
state. In addition, it features an internal set of gating
units that use multiplication to regulate the information
flow. Updates are made to the forgetting gate unit 1,
state unit s, input gate unit g”, output gate unit g,”,
and output 4 for each time step ¢ based on the current
input x(’) and the prior output h/“ D, Below is the
computmg process for an LSTM model at each stage

(Eq. [11]):

f =0 [b,.f +> U/ X"+ ZWI.{;hj(.’”]
J J
(t) (ORG (1) (@=1)
= [0 4 gt o(b +ZU” : +ZW,.J.hj )
J
g’ =0 [bf + YU+ WERT j
J J

(1 _ 0 o (1) 0 1,(t-1)
4i G[bi + 200X+ D j
j J

h” = tanh(s,*)q (1

The state unit and the three gate units are all
triggered by the sigmoid function o (*) and have their
own bias b, input weights U, and recurrent weights
w,. Ult1mately, the HADL cell s output is modified
to reﬂect the hidden layer vector 4. When an input/
output gate is activated in the forward direction, the
HADL may learn when and to what degree to let
values in/out. The value of the hidden layer will neither
increase nor decrease if both gates are closed, meaning
that neither outputs nor intermediate time steps will be
impacted. The gradients can also propagate backward
throughout many time steps without disappearing or
bursting. That is, gates may learn when to allow error
to enter and when to limit it. The ability of HADL to
learn long-term dependencies more effectively than
standard recurrent designs has made it popular for a
wide range of real-world applications.

The degree to which each input contributes to
a target class of interest ¢, or the relevance score of
each input concerning ¢, are among the things we are
interested in understanding, given a trained neural
network classifier. The fundamental principle behind
HADL is to assign a relevance score to each input by
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tracking each one’s layer-by-layer contribution to the
final prediction, f{x). According to the conservation
principle, the overall relevance allocated to one layer
should match the total relevance allocated to the layer
before. This is what the HADL method does. Given
two successive layers of a neural network, let’s say m
and n, the relevance scores meet the following criteria

(Eq. [12]):

zRi(m _ zRi(n) :f(x)

i i

(12)

In layers m and n, respectively, the relevance
scores of individual neurons are denoted by R ™ and
R ™. The rules governing the propagation of relevance
scores between two layers by Eq. (9) are varied to
accommodate the features of various neural network
structures. Eq. (13) illustrates a basic rule:

Z. .
(m) __ ij (n)
R™ = LR

Zy

(13)
J Kk

where Zksz, is the total contribution/relevance
delivered to neuron j from all linked neurons in layer
m before the application of a nonlinear activation
function; and z,; is the contribution/relevance received
by neuron ; in layer n from an activated neuron i in
layer m. This equation demonstrates the conservation
principle, which also holds for deactivation,
unconnected neurons, and zero weight (Eq. [14]).

R™ =% —Z—R" 14
: Z,szsz : (14)

Despite the HADL rule’s many desirable
qualities, robustness, and other improvements must
be taken into account when applying it to real-world
situations (Eq. [15]).

z .t z .
(m) __ 5J i,j (n)
R[M_zj azz +—ﬁzz JRJ_"
i i

To maintain numerical stability, the denominator
has a modest positive term ¢ in comparison to the
fundamental rule, where both the beneficial and
detrimental effects from the upper layer n are denoted
by z,' and Z5 respectively, and the weights of the
positive and negative contributions are controlled by
o and f. a+pf should be in line with the conservation
principle. To provide the outcomes with stability and
interpretability, the rule prefers the effects of positive
contributions over negative ones. One can manually
regulate the significance of positive and negative
contributions by carefully selecting the values of
coefficients a and f.

Temporal convolutional networks with LSTM
and other gated neural networks feature a unique
calculation called multiplicative interaction in

(15)
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addition to linear mapping computation in multi-
layer perceptron architectures. Two neurons are
multiplied by one another in this calculation, with
one acting as a signal and the other as a gate that
regulates the degree to which the signal affects the
output (Eq. [16]):

(16)

where z, and z_are two neuron values supplied to
the gate and signal unit from earlier layers, respectively,
() is the gate unit’s activation function, and g() is the
signal unit’s activation function.

In contrast to linear mapping, multiplicative
interaction’s nonlinearity presents unique challenges
related to reassigning importance to the preceding
layer. An established redistribution hierarchical method
known as “signal-take-all” is used when activation is
obtained by multiplying the value of a gate neuron by
the value of a signal neuron. This strategy includes

(Eq. [17]):
(R.R)=(0.R)

a, = fz) ()

(17)

where the relevance scores for the gate and
signal neurons are denoted by R, and R, respectively.
To comply with the conservation principle, the gate
neuron takes zero, while the signal neuron takes all of
the relevant R, from the top layer.

The HADL is a versatile ML approach that excels
in modeling complex data with multiple hierarchical
relationships. Its attention mechanisms enhance model
interpretability, allowing for a better understanding
of the prioritization of features. HADL -captures
short-term and long-term dependencies, making it
ideal for tasks like time-series analysis in WSNs. It
also enhances feature learning with its hierarchical
structure, allowing for better generalization and
robustness in anomaly or fault detection tasks. HADL
is adaptable to complex and noisy data, reducing
overfitting and improving performance on time-series
and sequential data. Its hierarchical nature allows it to
scale efficiently to large datasets, making it suitable for
real-world applications.

4. Results and Discussion

This  section thoroughly analyzes the
experimental results to assess the efficacy and
efficiency of the suggested approach. The outcomes
are compared to several cutting-edge methods using
various criteria, including sensitivity, specificity,
accuracy, and Fl-score. The suggested approach
outperformed the other methods by utilizing DL
models and sophisticated optimization techniques,
attaining near-perfect or perfect values in important
measures.
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4.1. Experimental Setup

The discussion focuses on interpreting these
results, highlighting the impact of the proposed
approach on fault detection in WSN, and addressing
how the method fills existing research gaps in reliability
and precision. The experiments used Python 3.7 as the
implementation platform, leveraging libraries such as
NumPy, Pandas, TensorFlow/PyTorch, Scikit-learn,
and Matplotlib for model development, optimization,
and visualization. The system’s performance was
evaluated under controlled conditions to ensure the
robustness and generalizability of the results. The
implementation and experimentation were performed
on the following system configuration:

(i)  Processor: Intel Core i7-12700H (12" Gen) with

14 cores (6 performance + 8§ efficiency cores)

and a clock speed up to 4.7 GHz

(i) Random access memory: 16 GB DDR4 3200
MHz, enabling efficient data handling and
processing of large datasets

(iii) Storage: 1 TB NVMe SSD, ensuring fast data
read/write operations and loading of large models

(iv) Operating system: Windows 11 64-bit, with
Python 3.7 as the programming environment

(v) Software frameworks: TensorFlow 2.9, PyTorch

1.12, Scikit-learn 1.1, and Matplotlib 3.5.

This high-performance configuration ensured
the smooth execution of computationally intensive
tasks, such as hyperparameter tuning, training DL
models, and performing iterative optimization. The
experiments were iteratively refined to achieve
optimal results, balancing computational efficiency
and prediction accuracy. The setup included advanced
optimization algorithms, fault detection models, and
dynamic filtering techniques, tested under controlled
conditions to ensure reliable and reproducible results.
This environment facilitated seamless experimentation,
from pre-processing the WSN-DS to training and
evaluating the proposed HADL.

4.2. Dataset Description

The WSN-DS wused in this study is a
comprehensive and widely used benchmark for fault
detection in WSNs. It contains various simulated data
representing five distinct classes: normal, grayhole,
blackhole, time-division multiple access (TDMA),
and flooding. The dataset includes a total of 60,000
instances, with each instance comprising detailed
features that capture the behavior and state of network
nodes under different conditions. The normal class
represents typical, fault-free network operations, while
the remaining classes correspond to various network
faults and malicious attacks, such as packet-dropping
and routing disruptions. Each class is well-balanced,
ensuring robust performance evaluation across all fault
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categories. The dataset provides feature-rich instances,
including metrics like node energy levels, packet
counts, delays, and routing information, offering
a realistic simulation of network scenarios. These
features were carefully pre-processed, normalized, and
split into training and testing sets to facilitate effective
model training and validation. This dataset serves as an
ideal foundation for evaluating the performance of fault
detection methods in complex WSN environments.

4.3. Performance Metrics

Fig. 3 illustrates the convergence behavior and
effectiveness of the RWOA. The initial phase, from
the first to the second iterations, shows a significant
drop in fitness value, indicating the algorithm’s
exploratory phase. From the second to the seventh
iterations, the plateau phase is marked by a plateau,
where the algorithm focuses on refining solutions
within a promising region. The further refinement
phase decreases slightly to 0.0267, indicating a near-
optimal solution and fine-tuning results. The graph
demonstrates the algorithm’s efficiency in narrowing
down the search space, the plateau phase, where
the algorithm focuses on exploitation, and the final
convergence, where the algorithm has converged
to a solution near the global optimum. This graph
demonstrates the algorithm’s ability to efficiently
find an optimal solution while avoiding unnecessary
computations beyond the point of diminishing returns.

The confusion matrix represents the performance
of a classification model across five classes: Normal,
Grayhole, Blackhole, TDMA, and Flooding (Fig. 4).
The diagonal elements indicate the correctly classified
instances, while off-diagonal elements represent
misclassifications. The model performs well overall,
with high accuracy for each class, as evidenced by
the large diagonal values. For example, normal has
11,857 true positives, with minimal misclassifications.

(RWO)

7

0 10 20 30 % 50
Number of Iterations

Fig. 3. Convergence behavior and effectiveness of the
rank-based whale optimization algorithm


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X

DOI: 10.6977/1J0S1.202510_9(5).0005

R. Gayathri, K.N. Shreenath, etc./Int. J. Systematic Innovation, 9(5), 56-70 (2025)

Similarly, grayhole achieves 11,885 correct
classifications, though 86 instances were misclassified
as blackhole and three as normal. The blackhole
class also performed well, with 11,950 true positives
and minor misclassifications. For TDMA, the model
correctly identified 11,695 instances, though there is
some confusion with normal, grayhole, and blackhole.
Finally, the Flooding class exhibited near-perfect
classification, with 11,991 correct predictions and no
significant misclassifications. The confusion matrix
highlights the model’s robustness but also reveals areas
for improvement, such as reducing misclassifications
between normal and TDMA and minimizing confusion
between grayhole and blackhole.

The AUC values for the five classes (0-4)
indicate the model’s excellent discriminatory ability
across all categories (Fig. 2). AUC values ranged from
0 to 1, with values closer to 1 representing superior
performance. Here, the AUC for class 0 (Normal) and
class 3 (TDMA) is 0.99, indicating that the model
can distinguish these classes from the others with
near-perfect accuracy. For class 1 (Grayhole), class 2

10000
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8000
Grayhole -
]
©
P Blackhole "I 6000
2
'_
TDMA | 4660
Flooding
I 2000
© L 9 g o
£ [S] ) = =
E T g= o T
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Predicted label

Fig. 4. Confusion matrix
Abbreviation: TDMA: Time-division multiple access

A

Accuracy

0 20 40 60 80 100

Epoch

Loss

(Blackhole), and class 4 (Flooding), the AUC is a
perfect 1, demonstrating flawless classification for
these classes. This suggests that the model had no
false positives or negatives for classes 1, 2, and 4,
showing exceptional precision and recall. Overall, the
AUC values underscore the model’s high reliability
and effectiveness in differentiating between all classes,
with minimal room for improvement.

The accuracy and loss curves in Fig. SA and B
depict the model’s performance during training and
testing. In plot 5A, the accuracy curve steadily increases
during training, indicating that the model is learning
effectively from the data. The testing accuracy also
improves and stabilizes, closely aligning with the
training accuracy, suggesting good generalization and
minimal overfitting. In plot 5B, the loss curve decreases
over epochs for both training and testing, reflecting a
reduction in prediction errors as the model optimizes
its parameters. The convergence of training and testing
loss at low values confirms the model’s robust learning
process. A smooth and stable trajectory for both accuracy
and loss curves indicates that the model training is well-
tuned, with no signs of underfitting or overfitting, and
performs consistently on unseen test data.

Fig. 6 shows the performance metrics for training
and testing. With an overall accuracy of 99%, the
model performed exceptionally well in the testing
phase across all five classes of WSNs. With values
near 0.99 or 1.00, the model’s accuracy, recall, and
Fl-scores were continuously high, demonstrating its
capacity to accurately detect occurrences of each class
while reducing false positives and false negatives. With
a perfect score, the flooding class exhibited faultless
detection. The performance of other classes, such as
blackhole and grayhole, was also strong. Weighted and
macro average measures further support the model’s
balanced performance across classes. The model’s
outstanding performance during training and testing,
together with its ability to balance accuracy, recall, and
Fl1-score, shows its usefulness in real-world situations
where reliable and precise fault classification is required.
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Fig. 5. (A and B) Accuracy and loss curves
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Fig. 6. (A and B) Performance metrics for training and testing
Abbreviation: TDMA: Time-division multiple access
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Fig. 7. (A-D) Comparative analysis for performance metrics
Abbreviations: AOA: Angle or arrival; GB: Gradient boosting; KNN: K-nearest neighbor; RKOA-AEID: Red kite
optimization algorithm-average ensemble model for intrusion detection; PSO: Particle swarm optimization;
XG Boost: Extreme gradient boosting

4.4. Comparison Metrics

Fig. 7 shows the performance of various
methods, including RKOA-AEID (Alruwaili et al.,
2023), Adaboost (Aljebreen et al., 2023), gradient
boosting (Aljebreen et al., 2023), extreme gradient
boosting (Algahtani et al., 2019), KNN-angle of arrival
(Liu et al., 2022), KNN-particle swarm optimization
(Liuetal., 2022), and the proposed method, across four
evaluation metrics: accuracy, F1-score, specificity, and
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sensitivity (Table 1). The proposed method achieved
the highest accuracy (99%), demonstrating superior
reliability in fault detection. RKOA-AEID performed
well (98%), while Adaboost and KNN-particle swarm
optimization performed moderately (94%). Gradient
boosting, extreme gradient boosting, and KNN-angle
of arrival exhibited intermediate results (97%). The
proposed method excelled with a perfect Fl-score
(100%), indicating an exceptional balance between
precision and recall. Adaboost and gradient boosting
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Table 1. Comparative chart of the proposed model with conventional methods

Methods Accuracy | Sensitivity | Specificity | F-score
Red kite optimization algorithm-average ensemble model for intrusion 98.94 75.33 96.45 79.52
detection (Alruwaili et al., 2023)
AdaBoost (Aljebreen et al., 2023) 95.69 69.22 95.00 76.13
Gradient booting (Aljebreen et al., 2023) 94.58 71.03 94.09 71.92
Extreme gradient boosting (Algahtani et al., 2019) 96.83 71.51 94.43 71.01
K-nearest neighbor-angle of arrival (Liu et al., 2022) 97.20 70.16 96.04 73.85
K-nearest neighbor-particle swarm optimization (Liu et al., 2022) 92.89 71.30 95.08 70.48
Proposed 99.25 98.74 99.32 98.39
lagged (75%), reflecting weaker handling of false Availability of Data
positives or false negatives. Extreme gradient boosting Not applicable.

and KNN-angle of arrival performed moderately
(97%). The proposed method consistently outperforms
all other techniques, achieving perfect F1, specificity,
and sensitivity scores and near-perfect accuracy.

5. Conclusion

This research presents a unified framework
for fault detection in WSNs that effectively
combines advanced noise filtering, optimized feature
selection, and a sophisticated DL architecture. The
proposed approach leverages a DNF technique with
adaptive thresholding to cleanse the data while
preserving its critical aspects, employs the RWOA
to select the most relevant features, and utilizes an
HADL model to capture both short-term and long-
term dependencies in sensor data. Experimental
evaluations of the WSN-DS confirm the framework’s
exceptional performance, achieving an accuracy
of 99.25%, sensitivity of 98.74%, specificity of
99.32%, and an F-score of 98.39%. These results
highlight the framework’s capacity to reliably detect
faults and reduce false alarms, ultimately enhancing
network reliability and extending the operational
lifespan of WSNs. The integration of these advanced
methodologies not only addresses existing challenges
in fault detection but also establishes a robust
foundation for future enhancements, including real-
time deployment and the incorporation of multi-
modal data.

Funding

None.

Conflict of Interest

The authors declare that they have no conflict of
interest.

References

Alghamdi, R., & Bellaiche, M. (2023). A cascaded
federated deep learning based framework for
detecting wormhole attacks in IoT networks.
Computers and Security Journal, 125, 103014.
https://doi.org/10.1016/j.cose.2022.103014

Aljebreen, M., Alohali,M.A., Saced, M.K.,Mohsen, H.,
Al Duhayyim, M., Abdelmageed, A.A., et al.
(2023). Binary chimp optimization algorithm
with ML based intrusion detection for secure
ToT-assisted wireless sensor networks. Sensors,
23(8), 4073.
https://doi.org/10.3390/s23084073

Almomani, O. (2021). A hybrid model using bio-
inspired metaheuristic algorithms for network
intrusion detection system. Computers, Materials
and Continua, 68, 409-429.
https://doi.org/10.32604/cmc.2021.016113

Alqgahtani, M., Gumaei, A., Mathkour, H., & Maher
Ben Ismail, M. (2019). A genetic-based extreme
gradient boosting model for detecting intrusions
in wireless sensor networks. Sensors (Basel),
19(20), 4383.
https://doi.org/10.3390/s19204383

Alruhaily, N.M., & Ibrahim, D.M. (2021), A multi-
layer machine learningbased intrusion detection
system for wireless sensor networks. The
International Journal of Advanced Science and
Computer Applications, 12(4), 281-288.
https://doi.org/10.14569/ijacsa.2021.0120437

Alruwaili, FF., Asiri, MM., Alrayes, F.S.,
Aljameel, S.S., Salama, A.S., & Hilal, A.M.
(2023). Red kite optimization algorithm with
average ensemble model for intrusion detection
forsecureloT. IEEE Access, 11,131749-131758.
https://doi.org/10.1109/access.2023.3335124

Chandre, P., Mabhalle, P., & Shinde, G. (2022).
Intrusion prevention system using convolutional


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X
https://doi.org/10.1016/j.cose.2022.103014
https://doi.org/10.3390/s23084073
https://doi.org/10.32604/cmc.2021.016113
https://doi.org/10.3390/s19204383
https://doi.org/10.14569/ijacsa.2021.0120437
https://doi.org/10.1109/access.2023.3335124

DOI: 10.6977/1J0S1.202510_9(5).0005

R. Gayathri, K.N. Shreenath, etc./Int. J. Systematic Innovation, 9(5), 56-70 (2025)

neural network for wireless sensor network.
International Journal of Artificial Intelligence,
2252(8938), 8938.
https://doi.org/10.11591/ijai.v11.i2.pp504-515

Chataut, R., Phoummalayvane, A., & Akl, R. (2023).
Unleashing the power of IoT: A comprehensive
review of IoT applications and future prospects in
healthcare agriculture, smart homes, smart cities,
and industry 4.0. Sensors (Basel), 23(16), 7194.
https://doi.org/10.3390/s23167194

Elsaid, S.A., & Albatati, N.S. (2020). An optimized
collaborative intrusion detection system for
wireless sensor networks. Soft Computing,
24(16), 12553-12567.
https://doi.org/10.1007/s00500-020-04695-0

Gebremariam, G.G., Panda, J., & Indu, S. (2023).
Design of advanced intrusion detection
systems based on hybrid machine learning
techniques in hierarchically wireless sensor
networks. Connectection Science, 35(1),
2246703.
https://doi.org/10.1080/09540091.2023.2246703

Ghazal, T. (2022). Data fusion-based machine learning
architecture for intrusion detection. Computers,
Materials and Continua, 70(2), 3399-3413.
https://doi.org/10.32604/cmc.2022.020173

Heidari, A., & Jabraeil Jamali, M.A. (2022). Internet
of things intrusion detection systems: A
comprehensive review and future directions.
Cluster Computing, 26, 1-28.
https://doi.org/10.1007/s10586-022-03776-z

Liu, G., Zhao, H., Fan, F., Liu, G., Xu, Q., & Nazir, S.
(2022). An enhanced intrusion detection model
based on improved kNN in WSNs. Sensors
(Basel), 22(4), 1407.
https://doi.org/10.3390/s22041407

Meng, D., Dai, H., Sun, Q., Xu, Y., & Shi, T. (2022).
Novel wireless sensor network intrusion
detection method based on lightGBM model.
1JAM - IAENG International Journal of Applied
Mathematics, 52(4), 23.

Mirjalili, S., & Lewis, A. (2016). The whale
optimization algorithm. Advances in Engineering
Software, 95, 51-67.
https://doi.org/10.1016/j.advengsoft.2016.01.008

Nimbalkar, A..D., Azmat, A., & Patil, Y. (2023).
Security issues in wireless sensor networks.
I-Manager s Journal on Wireless Communication
Networks, 11(2), 32.
https://doi.org/10.26634/jwcen.11.2.19780

Pandey, J.K., Kumar, S., Lamin, M., Gupta, S.,
Dubey, R.K.,, & Sammy, F. (2022). A
metaheuristic autoencoder deep learning model
for intrusion detector system. Mathematical
Problems in Engineering, 2022, 3859155.
https://doi.org/10.1155/2022/3859155

69

Putrada, A.G., Alamsyah, N., Pane, SF, &
Fauzan, M.N. (2022). Xgboost for Ids on WSN
Cyber Attacks with Imbalanced Data. In: 2022
International Symposium on Electronics and
Smart Devices (ISESD), p1-7.

Qaiwmchi, N.A.H., Amintoosi, H., & Mohajerzadeh, A.
(2020). Intrusion detection system based on
gradient-corrected online sequential extreme
learning machine. IEEE Access, 9, 4983-4999.
https://doi.org/10.1109/ACCESS.2020.3047933

Ravindra, C., Kounte, M.R., Lakshmaiah, G.S.,
& Prasad, V.N. (2023). Etelmad: Anomaly
detection using enhanced transient extreme
machine learning system in wireless sensor
networks. Wireless Personal Communications,
130(1), 21-41.
https://doi.org/10.1007/s11277-023-10271-0

Rezvi, M.A., Moontaha, S., Trisha, KA.,
Cynthia, S.T., & Ripon, S. (2021). Data mining
approach to analyzing intrusion detection of the
wireless sensor network. Indonesian Journal of
Electrical Engineering and Computer Science,
21(1), 516-523.
https://doi.org/10.11591/ijeecs.v21.11.pp516-523

Sezgin, A., & Boyaci, A. (2023). Aid4i: An
intrusion detection framework for industrial
internet of things using automated machine
learning. Computers, Materials and Continua,
76(2), 40287.

Sharmin, S., Ahmedy, 1., & Md Noor, R. (2023). An
energy-efficient data aggregation clustering
algorithm for wireless sensor networks using
hybrid PSO. Energies, 16(5), 2487.
https://doi.org/10.3390/en16052487

Singh, N., Virmani, D., & Gao, X.Z. (2020). A fuzzy
logic-based method to avert intrusions in
wireless sensor networks using WSN-DS dataset.
International Journal of Computer Applications,
19(3), 2050018.
https://doi.org/10.1142/S1469026820500182

Talukder, M. A, Islam, M.M., Uddin, M.A., Akhter, A.,
Hasan, K.F., & Moni, M.A. (2022). Machine
learning-based lung and colon cancer detection
using deep feature extraction and ensemble
learning, Expert Systems with Applications,

205, 117695.
https://doi.org/10.1016/j.eswa.2022.117695
Talukder, M.A., Hasan, KJF., Islam, M.M.,,

Uddin, M.A., Akhter, A., Yousuf, M.A., et al.
(2023). A dependable hybrid machine learning
model for network intrusion detection. Journal
of Information Security and Applications,
72, 103405.
https://doi.org/10.48550/arXiv.2212.04546
Talukder, M.A., Islam, M.M., Uddin, M. A, Hasan, K.F.,
Sharmin, S., Alyami, S.A., et al. (2024). Machine


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X
https://doi.org/10.11591/ijai.v11.i2.pp504-515
https://doi.org/10.3390/s23167194
https://doi.org/10.1007/s00500-020-04695-0
https://doi.org/10.1080/09540091.2023.2246703
https://doi.org/10.32604/cmc.2022.020173
https://doi.org/10.1007/s10586-022-03776-z
https://doi.org/10.3390/s22041407
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.26634/jwcn.11.2.19780
https://doi.org/10.1155/2022/3859155
https://doi.org/10.1109/ACCESS.2020.3047933
https://doi.org/10.1007/s11277-023-10271-0
https://doi.org/10.11591/ijeecs.v21.i1.pp516-523
https://doi.org/10.3390/en16052487
https://doi.org/10.1142/S1469026820500182
https://doi.org/10.1016/j.eswa.2022.117695
https://doi.org/10.48550/arXiv.2212.04546

DOI: 10.6977/1J0S1.202510_9(5).0005

R. Gayathri, K.N. Shreenath, etc./Int. J. Systematic Innovation, 9(5), 56-70 (2025)

learning-based network intrusion detection for big
and imbalanced data using oversampling, stacking
feature embedding and feature extraction. Journal
of Big Data, 11, 33.

Tan, X., Su, S., Huang, Z., Guo, X., Zuo, Z., Sun, X.,
et al. (2019). Wireless sensor networks intrusion
detection based on smote and the random forest

AUTHOR BIOGRAPHIES

R. Gayathri is a student in the Department of
Computer Science and Engineering at Siddaganga
Institute of Technology, affiliated with Visvesvaraya
Technological University, Karnataka, India. Her
areas of interest include machine learning, artificial
intelligence, and data analytics.

70

algorithm. Sensors (Basel), 19(1), 203.
https://doi.org/10.3390/s19010203

Yakubu, M.M., & Maiwada, U.D. (2023). Resource
limitations for wireless sensor networks to
establish a comprehensive security system in the
5g network. Umyu Scientifica, 2(2), 44-52.
https://doi.org/10.1007/s10207-024-00833-z

K. N. Shreenath is an Associate Professor in the
Department of Computer Science and Engineering
at Siddaganga Institute of Technology, affiliated with
Visvesvaraya Technological University, Karnataka,
India. He has several years of teaching and research
experience. His research interests include computer
networks, data mining, artificial intelligence, and
software engineering. He has guided numerous
student projects and published papers in national and
international journals and conferences.


https://dx.doi.org/10.6977/IJoSI.202510_9(5).000X
https://doi.org/10.3390/s19010203
https://doi.org/10.1007/s10207-024-00833-z

INSTRUCTIONS TO AUTHORS

Submission of papers

The International Journal of Systematic Innovation is a refereed journal publishing original papers four
times a year in all areas of Sl. Papers for publication should be submitted online to the 1JoSI website
(http://www.ijosi.org) In order to preserve the anonymity of authorship, authors shall prepare two files (in
MS Word format or PDF) for each submission. The first file is the electronic copy of the paper without
author's (authors') name(s) and affiliation(s). The second file contains the author's (authors') name(s), af-
filiation(s), and email address(es) on a single page. Since the Journal is blind refereed, authors should not
include any reference to themselves, their affiliations or their sponsorships in the body of the paper or on
Figs and computer outputs. Credits and acknowledgement can be given in the final accepted version of
the paper.

Editorial policy

Submission of a paper implies that it has neither been published previously nor submitted for publication
elsewhere. After the paper has been accepted, the corresponding author will be responsible for page for-
matting, page proof and signing off for printing on behalf of other co-authors. The corresponding author
will receive one hardcopy issue in which the paper is published free of charge.

Manuscript preparation

The following points should be observed when preparing a manuscript besides being consistent in style,
spelling, and the use of abbreviations. Authors are encouraged to download manuscript template from the
1JoSI website, http://www.ijosi.org.

1. Language. Paper should be written in English except in some special issues where Chinese may be ac-
cepTable Each paper should contain an abstract not exceeding 200 words. In addition, three to five key-
words should be provided.

2. Manuscripts. Paper should be typed, single-column, double-spaced, on standard white paper margins:
top = 25mm, bottom = 30mm, side = 20mm. (The format of the final paper prints will have the similar
format except that double-column and single space will be used.)

3. Title and Author. The title should be concise, informative, and it should appear on top of the first page
of the paper in capital letters. Author information should not appear on the title page; it should be pro-
vided on a separate information sheet that contains the title, the author’s (authors') name(s), affiliation(s),
e-mail address(es).

4. Headings. Section headings as well as headings for subsections should start front the left-hand margin.
5. Mathematical Expressions. All mathematical expressions should be typed using Equation Editor of
MS Word. Numbers in parenthesis shall be provided for equations or other mathematical expressions that
are referred to in the paper and be aligned to the right margin of the page.

6. Tables and Figs. Once a paper is accepted, the corresponding author should promptly supply original
copies of all drawings and/or tables. They must be clear for printing. All should come with proper num-
bering, titles, and descriptive captions. Fig (or table) numbering and its subsequent caption must be below
the Fig (or table) itself and as typed as the text.

7. References. Display only those references cited in the text. References should be listed and sequenced
alphabetically by the surname of the first author at the end of the paper. For example:

Altshuller, G. (1998). 40 Principles: TRIZ Keys to Technical Innovation, Technical Innovation Center.
Sheu, D. & Lee, H. (2011). A Proposed Process for Systematic Innovation, International Journal of Pro-
duction Research, Vol. 49, No. 3, 2011, 847-868.



The International Journal of Systematic Innovation
Journal Order Form

Organization
Or Individual Name

Postal address for delivery

Name: e-mail:
Person to contact Position:
School/Company:
I would like to order ___ copy(ies) of the International Journal of Systematic Innova-
tion:

Period Start: 1+/ 2~ half ___, Year:___ (Starting 2010)

Period End : 1/ 2« half ___, Year:

Order Price:

Information Institutions: US $150 (yearly) / NT 4,500 (In Taiwan only)
Individuals: US $50 (yearly) / NT 1500 (In Taiwan only)

(Local postage included. International postage extra)

E-mail to: 1JoSI@systematic-innovation.org or fax: +886-3-572-3210

Air mail desired O (If checked, we will quote the additional cost for your consent)

Total amount due US$

Payment Methods:

1.  Credit Card (Fill up the following information and e-mail/ facsimile this form to The Journal office indicated
below)

Bank transfer

Account: The Society of Systematic Innovation

Bank Name: Mega International Commercial BANK

Account No: 020-53-144-930

SWIFT Code: ICBCTWTP020

Bank code : 017-0206

Bank Address: No. 1, Xin’an Rd., East Dist., Hsinchu City 300, Taiwan (R.O.C.)

N~ WN

VISA / Master/ JCB/ AMERICAN Cardholder Authorization for Journal Order
Card Holder Information

Card Holder Name (as it appears on card)

Full Name (Last, First
Middle)

Expiration Date / (month / year) Card Type o0 VISA 0 MASTER O JCB

) ]
Card Number OO0O00-0000-0000-0000 Security Code 2

oof

Amount Authorized Special Messages

Full Address (Incl.
Street, City, State, Coun-
try and Postal code)

Please Sign your name here (same as the signature on your card)

The Society of Systematic Innovation

6 F, #352, Sec. 2, Guanfu Rd,
Hsinchu, Taiwan, 30071, R.O.C.



mailto:IJoSI@systematic-innovation.org
http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=%E6%9C%88

	IJoSI_v9i5 - Front Cover
	IJoSI_v9i5 - Front Pages (new)
	IJoSI_v9i5 - Compiled Articles
	1-13
	14-22
	23-42
	43-55
	56-70

	IJoSI_v9i5 - Back Pages



